精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{\begin{array}{l}(a-3)x+5,(x≤1)\\ \frac{2a}{x},(x>1)\end{array}\right.$,满足对任意的,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$<0成立,则a的取值范围是(  )
A.(0,3)B.(0,3]C.(0,2)D.(0,2]

分析 由已知条件及减函数的定义便可判断f(x)在R上为减函数,从而根据一次函数、反比例函数的单调性,及减函数的定义可以得出a应满足$\left\{\begin{array}{l}{a-3<0}\\{a>0}\\{(a-3)•1+5≥\frac{2a}{1}}\end{array}\right.$,解该不等式组即可得到a的取值范围.

解答 解:根据题意知,f(x)在R上单调递减;
∴$\left\{\begin{array}{l}{a-3<0}\\{a>0}\\{(a-3)•1+5≥\frac{2a}{1}}\end{array}\right.$;
解得0<a≤2;
∴a的取值范围为(0,2].
故选:D.

点评 考查减函数的定义,以及一次函数、反比例函数的单调性,分段函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.求函数y=2${\;}^{{x}^{2}-5x+6}$,x∈[1,5]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,若a2-c2=b2+bc,则A=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={a|$\frac{{x}^{2}-4}{x+a}$=1}有唯一解,用列举法表示集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足a1=$\frac{2}{3}$,an+1=$\frac{{a}_{n}-2}{2{a}_{n}-3}$(n∈N*). 
(Ⅰ)求证:{$\frac{1}{{a}_{n}-1}$}是等差数列;并求数列{an}的通项an
(Ⅱ)设bn=$\frac{{a}_{n}}{n(2n+3)}$,记数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.方程x2+(k-1)y2=k+1表示焦点在x轴上的双曲线,则k的取值范围是(  )
A.k<-1B.k>1C.-1<k<1D.k<-1或k>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.不等式-x2-3x+4≥0的解集是[-4,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+α)(A>0,ω>0,-$\frac{π}{2}$<α<$\frac{π}{2}$)的最小正周期是π,当x=$\frac{π}{6}$时,f(x)取得最大值3.
(Ⅰ)求f(x)的解析式及对称中心;
(Ⅱ)说明此函数图象可由y=sinx的图象经怎样的变换得到;
(Ⅲ)求f(x)在区间x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了美化校园环境,某校计划对学生乱扔垃圾现象进行罚款处理,为了更好的了解学生的态度,随机抽取了200人进行了调查,得到如下数据:
罚款金额x(单位:元)05101520
会继续乱扔垃圾的人数y8050402010
(Ⅰ)若乱扔垃圾的人数 y 与罚款金额 x 满足线性回归方程,求回归方程$\hat y=bx+a$,其中b=-3.4,a=$\overline{y}$-b$\overline{x}$,并据此分析,要使乱扔垃圾者不超过20%,罚款金额至少是多少元?
(Ⅱ)若以调查数据为基础,从这5种罚款金额中随机抽取2种不同的数额,求这两种金额之和不低于25元的概率.

查看答案和解析>>

同步练习册答案