精英家教网 > 高中数学 > 题目详情

已知命题p:f (x)=数学公式,且|f(a)|<2;命题q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅,求实数a的取值范围,使p、q中有且只有一个为真命题.

解:命题p:|f(x)|<2,(2分)
命题q:设x2+(a+2)x+1=0判别式为△
当△<0时,A=∅,此时△=(a+2)2-4<0,-4<a<0
当△≥0时,由A∩B=∅得
∴a>-4 (6分)
(1)若p真q假
(2)若p假q真
∴实数a的取值范围为(-5-4]∪[7,+∞)(12分)
分析:先求得命题p中草药范围,再对x2+(a+2)x+1=0判别式△分类讨论,分△<和△≥0,使A∩B=∅,,求出a的范围;然后利用复合命题的真值表,根据“有且仅有一个真”分两类求出a的范围.
点评:本题考查二次不等式恒成立求参数范围、二次不等式的解法、分类讨论的数学思想方法.解答关键是复合命题的真假判断表.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:f(x)=x3-ax在(2,+∞)为增函数,命题q:g(x)=x2-ax+3在(1,2)为减函数.若p或q为真,p且q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:f(x)=
1-2xm
在区间(0,+∞)上是减函数;命题q:不等式(x-1)2>m的解集为R.若命题“p∨q”为真,命题“p∧q”为假,则实数m的取值范围是
m≠0
m≠0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:f(x)=
log3a-1x
在区间(0,+∞)上是增函数;命题q:关于x的不等式x2-2ax+1>0的解集为R,若pⅤq为真,若p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:f(x)=log(m-1)x是减函数,命题q:f(x)=-(5-2m)x是减函数,则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:f(x)=x2-ax+1在[-1,1]上不具有单调性;命题q:?x0∈R,使得x02+2ax0+4a=0
(Ⅰ)若p∧q为真,求a的范围.
(Ⅱ)若p∨q为真,求a的范围.

查看答案和解析>>

同步练习册答案