精英家教网 > 高中数学 > 题目详情
(2013•重庆)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).
(Ⅰ)将V表示成r的函数V(r),并求该函数的定义域;
(Ⅱ)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
分析:(I)由已知中侧面积和底面积的单位建造成本,结合圆柱体的侧面积及底面积公式,根据该蓄水池的总建造成本为12000π元,构造方程整理后,可将V表示成r的函数,进而根据实际中半径与高为正数,得到函数的定义域;
(Ⅱ)根据(I)中函数的定义值及解析式,利用导数法,可确定函数的单调性,根据单调性,可得函数的最大值点.
解答:解:(I)∵蓄水池的侧面积的建造成本为200•πrh元,
底面积成本为160πr2元,
∴蓄水池的总建造成本为200•πrh+160πr2
即200•πrh+160πr2=1200π
∴h=
1
5r
(300-4r2
∴V(r)=πr2h=πr2
1
5r
(300-4r2)=
π
5
(300r-4r3
又由r>0,h>0可得0<r<5
3

故函数V(r)的定义域为(0,5
3

(II)由(I)中V(r)=
π
5
(300r-4r3),(0<r<5
3

可得V′(r)=
π
5
(300-12r2),(0<r<5
3

∵令V′(r)=
π
5
(300-12r2)=0,则r=5
∴当r∈(0,5)时,V′(r)>0,函数V(r)为增函数
当r∈(5,5
3
)时,V′(r)<0,函数V(r)为减函数
且当r=5,h=8时该蓄水池的体积最大
点评:本题考查的知识点是函数模型的应用,其中(I)的关键是根据已知,求出函数的解析式及定义域,(II)的关键是利用导数分析出函数的单调性及最值点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•重庆)某几何体的三视图如图所示,则该几何体的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•重庆)某几何体的三视图如图所示,则该几何体的表面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•重庆)从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得
10
i=1
xi=80
10
i=1
yi=20
10
i=1
xiyi=184
10
i=1
x
2
i
=720

(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;
(Ⅱ)判断变量x与y之间是正相关还是负相关;
(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程y=bx+a中,b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
a=
.
y
-b
.
x
,其中
.
x
.
y
为样本平均值,线性回归方程也可写为
y
=
b
x+
a

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•重庆)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:
奖级 摸出红、蓝球个数 获奖金额
一等奖 3红1蓝 200元
二等奖 3红0蓝 50元
三等奖 2红1蓝 10元
其余情况无奖且每次摸奖最多只能获得一个奖级.
(1)求一次摸奖恰好摸到1个红球的概率;
(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).

查看答案和解析>>

同步练习册答案