精英家教网 > 高中数学 > 题目详情
已知F(1,0),M(3,2)是两定点,P是抛物线y2=4x上的动点,则MP+PF的最小值为
 
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|进而把问题转化为求|MP|+|MD|取得最小,进而可推断出当D,M,P三点共线时|MP|+|MD|最小,答案可得.
解答: 解:设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|
∴要求|MP|+|MF|取得最小值,即求|MP|+|MD|取得最小,
当D,M,P三点共线时|MP|+|MD|最小,为3-(-1)=4.
故答案为:4.
点评:本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D,M,P三点共线时|PM|+|MD|最小,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(x)=-x2+ax在区间[0,1]上是增函数,在区间[3,4]上是减函数,则实数a的取值范围是(  )
A、(0,3)
B、(1,3)
C、[1,3]
D、(0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数x,y满足:x+y+3=xy,若对任意满足条件的x,y:(x+y)2-a(x+y)+1≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知lg2=a,lg7=b,那么log898=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆过点A(2,4),B(3,-1),则此椭圆的标准方程为(  )
A、
y2
28
+
x2
28
3
=1
B、
x2
28
+
y2
28
3
=1
C、
y2
28
+
x2
28
3
=1或
x2
28
+
y2
28
3
=1
D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

若a=3-
1
2
,b=log3
1
2
,c=log3
1
5
,则a,b,c大小顺序正确的为(  )
A、a<b<c
B、c<b<a
C、c<a<b
D、a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(-3)2
4
+(2
10
27
)
-
2
3
-2π0=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若a,b,c分别为内角A、B、C所对的边,则
bcosC-a
bcosA-c
-
sinC
sinA
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-|x|,x∈R.
(1)判断函数的奇偶性;
(2)画出草图,并指明函数的单调区间.

查看答案和解析>>

同步练习册答案