精英家教网 > 高中数学 > 题目详情
已知双曲线C:(a>0,b>0),F1、F2分别为C 的左、右焦点。P为C右支上一点,且使∠F1PF2=,又 △F1PF2的面积为
(1)求C的离心率e;
(2)设A为C的左顶点。Q为第一象限内C上的任意一点,问是否存在常数λ(λ>0),使得∠QF2A= λ∠QAF2恒成立。若存在,求出λ的值;若不存在,请说明理由。
解:(1)如图,在△PF1F2中,由余弦定理,
 




 
 (2)由(1),双曲线方程为
若QF2⊥x轴,此时Q(2a,3a),c=2a,△QAF2为等腰Rt△
∠QAF2=
下证

tan∠QF2A=

tan2∠QAF2=
tan∠QF2A
∴存在常数,使∠QAF2=∠QF2A恒成立。
 
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年潍坊市六模)(12分)已知双曲线Ca>0,b>0),B是右顶点,F是右焦点,点Ax轴正半轴上,且满足成等比数列,过F作双曲线C在第一、第三象限的渐近线的垂线l,垂足为P

  (1)求证:

  (2)若l与双曲线C的左、右两支分别相交于点DE,求双曲线C的离心率e的取值范围.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:=1(a>0,b>0),B是右顶点,F是右焦点,点A在x轴的正半轴,且满足||、||、||成等比数列,过F作双曲线C在第一、三象限的渐近线的垂线l,垂足为P.

(1)求证:·=·

(2)若l与双曲线C的左、右两支分别交于点D、E,求双曲线C的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:=1(a>0,b>0),B是右顶点,F是右焦点,点A在x轴正半轴上,且||、||、||成等比数列,过F作双曲线C在第一、三象限的渐近线的垂线l,垂足为P.

(1)求证:·=·

(2)若l与双曲线C的左、右两支分别相交于点D、E,求双曲线离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(全国大纲卷解析版) 题型:解答题

已知双曲线C:(a>0,b>0)的左、右焦点分别为,离心率为3,直线y=2与C的两个交点间的距离为.

(Ⅰ)求a,b;

(Ⅱ)设过的直线l与C的左、右两支分别交于A、B两点,且,证明:成等比数列.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州中学高三(上)周练数学试卷(12.22)(解析版) 题型:填空题

在平面直角坐标系xOy中,已知双曲线C:(a>0)的一条渐近线与直线l:2x-y+1=0垂直,则实数a=   

查看答案和解析>>

同步练习册答案