精英家教网 > 高中数学 > 题目详情
下列函数是增函数的是(  )
A、y=tanx(x∈(0,
π
2
)∪(
π
2
,π))
B、y=x 
1
3
C、y=cosx(x∈(0,π))
D、y=2-x
考点:正切函数的单调性
专题:函数的性质及应用,三角函数的图像与性质
分析:根据函数的定义域直接确定函数的单调性
解答: 解:(1)y=tanx(x∈(0,
π
2
)∪(
π
2
,π)
)函数在定义域x∈(0,
π
2
)∪(
π
2
,π)
不具有单调性.
(2)y=cosx(x∈(0,π))在定义域内为单调递减函数.
(3)y=2-x在定义域内为单调递减函数.
故选B
点评:本题考查的知识要点:函数的单调性与定义域的关系
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1.求证:
(1)面C1BD∥面AB1D1
(2 )A1C⊥平面AB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足xf′(x)≤0,且y=f(x)为偶函数,当|x1|<|x2|时,有(  )
A、f(x1)>f(x2
B、f(x1)=f(x2
C、f(x1)<f(x2
D、f(|x2|)>f(x1

查看答案和解析>>

科目:高中数学 来源: 题型:

设某几何体三视图如图所示,则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,cosx)、
b
=(sinx,3cosx)、
c
=(-cosx,-sinx),f(x)=
a
•(
b
-
c
).
(1)求函数f(x)的最大值和最小正周期.
(2)f(x)按向量(
π
6
,1)平移后得到g(x),求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn(n∈N+),且an=2n+λ,若数列{Sn}在n≥7时为递增数列,则实数λ的取值范围为(  )
A、(-15,+∞)
B、[-15,+∞)
C、[-16,+∞)
D、(-16,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益(单位:元)满足R(x)=
400x-
1
2
x2,0≤x≤400
80000,x>400
其中x(单位:台)是仪器的月产量.
(1)将利润表示为月产量的函数f(x);
(2)当月产量为何值时,公司利润最大?最大为多少元?(总收益=总成本+利润)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数fx)=tan(2x+
π
4
).
(1)求fx)的定义域与最小正周期;
(2)设α∈(0,
π
4
),若f(
α
2
=2cos 2α,求α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
b
x-1
-a(a∈R,a≠0),f′(3)=a-
1
2

(1)若g(x)=f(x+1),求证:曲线g(x)上的任意一点处的切线与直线x=0和直线y=ax围成的三角形面积为定值;
(2)若f(3)=3,是否存在实数m,k,使得f(x)+f(m-x)=k对于定义域内的任意x都成立.

查看答案和解析>>

同步练习册答案