精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在原点,焦点在轴上,一个顶点,且右焦点到直线的距离为.

(1)求椭圆的方程.

(2)若点为椭圆的下顶点,是否存在斜率为,且过定点的直线,使与椭圆交于不同两点,且满足? 若存在,求直线的方程;若不存在,请说明理由.

【答案】(1)2)存在直线满足题意,直线的方程为

【解析】

(1)由椭圆的一个顶点,求得的值,由右焦点到直线的距离为利用点到直线的距离公式求得的值从而可得进而可得结果;(2)直线的方程,带入椭圆方程得利用韦达定理求出的中点的坐标为,结合斜率公式将问题转化为解方程即可.

1)设椭圆的方程为:,由已知得,设右焦点为

由题意的,∴舍去),∴

∴椭圆的方程为:

2)直线的方程,带入椭圆方程得

,设,则,设的中点为,则点的坐标为,∵

∴点在线段的中点上,,化简得:

,∴,所以,存在直线满足题意,直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是2018年第一季度五省GDP情况图,则下列描述中不正确的是( )

A. 与去年同期相比2018年第一季度五个省的GDP总量均实现了增长

B. 2018年第一季度GDP增速由高到低排位第5的是浙江省

C. 2018年第一季度GDP总量和增速由高到低排位均居同一位的省只有1

D. 去年同期河南省的GDP总量不超过4000亿元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点为参数).以为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.

(1)求点的轨迹的方程及直线的直角坐标方程;

(2)求曲线上的点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,a,b,c分别为角ABC所对的三边,

(I)求角A

(II)若,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了了解2018年当地居民网购消费情况,随机抽取了100人,对其2018年全年网购消费金额(单位:千元)进行了统计,所统计的金额均在区间内,并按,…,6组,制成如图所示的频率分布直方图.

(1)求图中的值;

(2)若将全年网购消费金额在20千元及以上者称为网购迷.结合图表数据,补全列联表,并判断是否有的把握认为样本数据中的网购迷与性别有关系?说明理由;

合计

网购迷

20

非网购迷

45

合计

下面的临界值表仅供参考:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数, 为自然对数的底数),曲线在与轴的交点处的切线斜率为-1.

(1)求的值及函数的单调区间;

(2)证明:当时,

(3)证明:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地4个蔬菜大棚顶部,阳光照在一棵棵茁壮生长的蔬菜上,这些采用水培、无土栽培方式种植的各类蔬菜,成为该地区居民争相购买的对象,过去50周的资料显示,该地周光照量小时都在30以上,其中不足50的周数大约5周,不低于50且不超过70的周数大约有35周,超过70的大约有10周,根据统计某种改良黄瓜每个蔬菜大棚增加量百斤与每个蔬菜大棚使用农夫1号液体肥料千克之间对应数据为如图所示的折线图.

(1)依据数据的折线图,用最小二乘法求出关于的线性回归方程并根据所求线性回归方程,估计如果每个蔬菜大棚使用农夫1号肥料10千克,则这种改良黄瓜每个蔬菜大鹏增加量是多少斤?

(2)因蔬菜大棚对光照要求较大,某光照控制仪商家为应对恶劣天气对光照的影响,为该基地提供了部分光照控制仪,该商家希望安装的光照控制仪尽可能运行,但每周光照控制仪最多可运行台数受周光照量限制,并有如下关系:

周光照量单位:小时

30<X<50

光照控制仪最多可运行台数

3

2

1

若某台光照控制仪运行,则该台光照仪周利润为4000元;若某台光照仪未运行,则该台光照仪周亏损500元,欲使商家周总利润的均值达到最大,应安装光照控制仪多少台?

附:回归方程系数公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A{x|2≤x≤5}B{x|m1≤x≤2m1}

(1)A∪BA,求实数m的取值范围;

(2)x∈Z时,求A的非空真子集的个数;

(3)x∈R时,若A∩B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且.

1)求的值,并确定的解析式;

2)若,是否存在实数,使得在区间上为减函数.

查看答案和解析>>

同步练习册答案