【题目】已知椭圆的中心在原点,焦点在轴上,一个顶点,且右焦点到直线的距离为.
(1)求椭圆的方程.
(2)若点为椭圆的下顶点,是否存在斜率为,且过定点的直线,使与椭圆交于不同两点,且满足? 若存在,求直线的方程;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】如图是2018年第一季度五省GDP情况图,则下列描述中不正确的是( )
A. 与去年同期相比2018年第一季度五个省的GDP总量均实现了增长
B. 2018年第一季度GDP增速由高到低排位第5的是浙江省
C. 2018年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个
D. 去年同期河南省的GDP总量不超过4000亿元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点(为参数).以为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.
(1)求点的轨迹的方程及直线的直角坐标方程;
(2)求曲线上的点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了了解2018年当地居民网购消费情况,随机抽取了100人,对其2018年全年网购消费金额(单位:千元)进行了统计,所统计的金额均在区间内,并按,,…,6组,制成如图所示的频率分布直方图.
(1)求图中的值;
(2)若将全年网购消费金额在20千元及以上者称为网购迷.结合图表数据,补全列联表,并判断是否有的把握认为样本数据中的网购迷与性别有关系?说明理由;
男 | 女 | 合计 | |
网购迷 | 20 | ||
非网购迷 | 45 | ||
合计 |
下面的临界值表仅供参考:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
附: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为常数, 为自然对数的底数),曲线在与轴的交点处的切线斜率为-1.
(1)求的值及函数的单调区间;
(2)证明:当时, ;
(3)证明:当时, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地4个蔬菜大棚顶部,阳光照在一棵棵茁壮生长的蔬菜上,这些采用水培、无土栽培方式种植的各类蔬菜,成为该地区居民争相购买的对象,过去50周的资料显示,该地周光照量(小时)都在30以上,其中不足50的周数大约5周,不低于50且不超过70的周数大约有35周,超过70的大约有10周,根据统计某种改良黄瓜每个蔬菜大棚增加量(百斤)与每个蔬菜大棚使用农夫1号液体肥料(千克)之间对应数据为如图所示的折线图.
(1)依据数据的折线图,用最小二乘法求出关于的线性回归方程;并根据所求线性回归方程,估计如果每个蔬菜大棚使用农夫1号肥料10千克,则这种改良黄瓜每个蔬菜大鹏增加量是多少斤?
(2)因蔬菜大棚对光照要求较大,某光照控制仪商家为应对恶劣天气对光照的影响,为该基地提供了部分光照控制仪,该商家希望安装的光照控制仪尽可能运行,但每周光照控制仪最多可运行台数受周光照量限制,并有如下关系:
周光照量(单位:小时) | 30<X<50 | ||
光照控制仪最多可运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照仪周利润为4000元;若某台光照仪未运行,则该台光照仪周亏损500元,欲使商家周总利润的均值达到最大,应安装光照控制仪多少台?
附:回归方程系数公式: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若A∪B=A,求实数m的取值范围;
(2)当x∈Z时,求A的非空真子集的个数;
(3)当x∈R时,若A∩B=,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com