精英家教网 > 高中数学 > 题目详情
,a∈R,且满足方程:x3+sinx-2a=0,和4y3+sinycosy+a=0则点P(x,y)的轨迹方程是   
【答案】分析:利用x3+sinx-2a=0,4y3+sinycosy+a=0,推导出2a=x3+sinx=(-2y)3+sin(-2y),构造函数f(x)=x3+sinx,则f(x)=f(-2y),再由f(x)在[-]是增函数,能够推导出点P(x,y)的轨迹方程.
解答:解:∵x3+sinx-2a=0,4y3+sinycosy+a=0,
∴2a=x3+sinx=(-2y)3+sin(-2y),
构造函数f(x)=x3+sinx,
∴f(x)=f(-2y),
又∵
∴f(x)是增函数,
∴x=-2y,
故点P(x,y)的轨迹方程是:x+2y=0.
故答案为:x+2y=0.
点评:本题考查点的轨迹方程的求法,综合性强,是高考的重点,易错点是知识体系不牢固.本题具体涉及到轨迹方程的求法及三角函数的相关知识,解题的关键是构造函数构造函数f(x)=x3+sinx.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、下列是关于函数y=f(x),x∈[a,b]的几个命题:
①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;
②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;
③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;
④用二分法求方程的根时,得到的都是近似值.
那么以上叙述中,正确的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江西模拟)若x,y∈[-
π
4
π
4
]
,a∈R,且满足方程:x3+sinx-2a=0,和4y3+sinycosy+a=0则点P(x,y)的轨迹方程是
x+2y=0
x+2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

数学公式,a∈R,且满足方程:x3+sinx-2a=0,和4y3+sinycosy+a=0则点P(x,y)的轨迹方程是________.

查看答案和解析>>

科目:高中数学 来源:江西模拟 题型:填空题

x,y∈[-
π
4
π
4
]
,a∈R,且满足方程:x3+sinx-2a=0,和4y3+sinycosy+a=0则点P(x,y)的轨迹方程是______.

查看答案和解析>>

同步练习册答案