精英家教网 > 高中数学 > 题目详情

【题目】在四边形ABCD中, =(2,﹣2), =(x,y), =(1, ).
(1)若 ,求x,y之间的关系式;
(2)满足(1)的同时又有 ,求x,y的值以及四边形ABCD的面积.

【答案】
(1)解: = =﹣ ﹣(x,y)﹣(2,﹣2)=(﹣3﹣x,﹣y﹣ ).

,∴x(﹣y﹣ )﹣y(﹣3﹣x)=0,化为x=2y


(2)解: = =(2+x,﹣2+y), = =

,∴(2+x)(x+1)+(y﹣2)(y+ )=0,又x=2y,

联立解得 ,或

= =(2,4), = =

=(﹣2,﹣4), =(﹣3, ), = =

∴SABCD= = =


【解析】(1) = ,利用向量共线定理即可得出.(2) = =(2+x,﹣2+y), = = .由 ,可得 =0,再利用SABCD= 即可得出.
【考点精析】利用平面向量的坐标运算对题目进行判断即可得到答案,需要熟知坐标运算:设;;设,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( + )x3(a>0,a≠1).
(1)讨论函数f(x)的奇偶性;
(2)求a的取值范围,使f(x)+f(2x)>0在其定义域上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 ﹣3(ω>0)
(1)若 是最小正周期为π的偶函数,求ω和θ的值;
(2)若g(x)=f(3x)在 上是增函数,求ω的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列式子中成立的是(
A.log 4<log 6
B.( 0.3>( 0.3
C.( 3.4<( 3.5
D.log32>log23

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在等比数列{an}中,a1=1,且a2是a1和a3﹣1的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=2n﹣1+an(n∈N*),求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx,2cosx), =(5 cosx,cosx),函数f(x)= +| |2
(1)求函数f(x)的最小正周期;
(2)若x∈( )时,f(x)=﹣3,求cos2x的值;
(3)若cosx≥ ,x∈(﹣ ),且f(x)=m有且仅有一个实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在(﹣∞,0)∪(0,+∞)上的奇函数,在区间(﹣∞,0)单调递增且f(﹣1)=0.若实数a满足 ,则实数a的取值范围是(
A.[1,2]
B.
C.(0,2]
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

(1)求△ACD的面积;
(2)若BC=2 ,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为的正方形,平面平面 ,

(Ⅰ)求证: 平面

)求三棱锥的体积.

查看答案和解析>>

同步练习册答案