精英家教网 > 高中数学 > 题目详情
如图直角梯形OABC中,∠COA=∠AOB=90°,OC=2,OA=AB=1,SO⊥平面OABC,SO=1,分别以OC,OA,OS为x轴、y轴、z轴建立直角坐标系O-xyz.
(Ⅰ)求
SC
OB
夹角的余弦值;
(Ⅱ)求OC与平面SBC夹角的正弦值;
(Ⅲ)求二面角S-BC-O.
(Ⅰ)如图所示:C(2,0,0),S(0,0,1),O(0,0,0),B(1,1,0).
SC
=(2,0,-1),
OB
=(1,1,0),
∴cos<
SC
OB
>=
2
5
2
=
10
5

SC
OB
夹角的余弦值为
10
5
.…(3分)
(Ⅱ)设平面SBC的法向量
n
=(1,p,q),
SC
=(2,0,-1),
CB
=(-1,1,0),
2-q=0
-1+p=0
,∴
p=1
q=2

n
=(1,1,2),…(6分)
又∵
OC
=(2,0,0),
∴cos<
n
OC
>=
n
OC
|
n
||
OC
|
=
2
6
×2
=
6
6

∴OC与平面SBC夹角的正弦值为
6
6
;…(8分)
(Ⅲ)∵SO⊥平面OABC,∴
OS
=(0,0,1)为平面OABC的法向量.
又∵平面SBC的法向量
n
=(1,1,2),
∴cos<
n
OS
>=
n
OS
|
n
||
OS
|
=
2
6
=
6
3

∴二面角S-BC-O的余弦值为
6
3
.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,平面α⊥平面β,A∈α,B∈β,AB与平面α所成的角为
π
4
,过A、B分别作两平面交线的垂线,垂足为A′、B′,若AB=3A'B',则AB与平面β所成的角的正弦值是(  )
A.
14
6
B.
5
5
C.
22
6
D.
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图(1),等腰直角三角形ABC的底边AB=4,点D在线段AC上,DE⊥AB于E,现将△ADE沿DE折起到△PDE的位置(如图(2)).
(Ⅰ)求证:PB⊥DE;
(Ⅱ)若PE⊥BE,直线PD与平面PBC所成的角为30°,求PE长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面是正方形的四棱锥P-ABCD中,PA=AB=1,PB=PD=
2
,点E在PD上,且PE:ED=2:1.
(1)求证:PA⊥平面ABCD;
(2)求二面角D-AC-E的余弦值;
(3)在棱PC上是否存在一点F,使得BF平面ACE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1中,AB=BC,∠ABC=120°,Q是AC上的点,AB1平面BC1Q.
(Ⅰ)确定点Q在AC上的位置;
(Ⅱ)若QC1与平面BB1C1C所成角的正弦值为
2
4
,求二面角Q-BC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点.
(Ⅰ)求证:B1E⊥AD1
(Ⅱ)在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求AP的长;若不存在,说明理由.
(Ⅲ)若二面角A-B1E-A1的大小为30°,求AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCD-A1B1C1D1的棱长为2,P是底面A1B1C1D1的中心,M是CD的中点,则P到平面AMD1的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点.
(Ⅰ)求证:A1B平面ADC1
(Ⅱ)求二面角C1-AD-C的余弦值;
(Ⅲ)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E点位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在?ABCD中,=a,=b,=3,M为BC的中点,则=______(用a,b表示).

查看答案和解析>>

同步练习册答案