精英家教网 > 高中数学 > 题目详情
已知圆x2+y2-x-8y+m=0与直线x+2y-6=0相交于P、Q两点,定点R(1,1),若PR⊥QR,求实数m的值.

解:设P(x1,y1)、Q(x2,y2),

消去y得5x2+4m-60=0.①

由题意,方程①有两个不等的实数根,所以60-4m>0,即m<15.

由韦达定理因为PR⊥QR,所以kPRkQR=-1.

所以·=-1,即(x1-1)(x2-1)+(y1-1)(y2-1)=0,即x1x2-(x1+x2)+y1y2-(y1+y2)+2=0.②

因为y1=3,y2=3,

所以y1y2=(3)(3)=9(x1+x2)+=9+,y1+y2=6.

代入②,得x1x2+5=0,即(m-12)+5=0.

所以m=10,适合m<15.所以实数m的值为10.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P、Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2+x-6y+m=0与直线x+2y-3=0交于P、Q两点,0为坐标原点,问是否存在实数m,使OP⊥OQ.若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且
CP
CQ
=0
( C为圆心).则该圆的半径为
 
,m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2+x-6y+c=0与直线x+2y-5=0相交于P、Q两点,O为坐标原点,若OP⊥OQ,求该圆的圆心坐标及半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P、Q两点,且以PQ为直径的圆恰好经过坐标原点O,求m的值.

查看答案和解析>>

同步练习册答案