精英家教网 > 高中数学 > 题目详情
(2013•牡丹江一模)已知下列命题:
①命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”;
②“a>2”是“a>5”的充分不必要条件;
③“若xy=0,则x=0且y=0”的逆否命题为真命题.
④已知p、q为两个命题,若“p∨q”为假命题,则“¬p∧¬q”为真命题. 
其中真命题的个数为(  )
分析:①特称命题的否定为全称命题;②若p是q的充分不必要条件,则对应的集合满足P?Q;
③原命题与其逆否命题有相同的真假性,故可判断原命题的真假性;④原命题若是假命题,则其否定为真命题.
解答:解:①命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①是假命题;
②由于a>5成立,则a>2一定成立,而a>2成立,a>5不一定成立,故②是假命题;
③由于命题“若xy=0,则x=0且y=0”是假命题,故③是假命题;
④由于“p∨q”的否定是“¬p∧¬q”,故④是真命题.
故答案为C.
点评:本题考查的知识点是,判断命题真假,属于简单题,我们需对四个结论逐一进行判断,可以得到正确的结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•牡丹江一模)在球O内任取一点P,使得P点在球O的内接正方体中的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)复数 (1+i)z=i( i为虚数单位),则
.
z
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知函数f(x)=
1+1nx
x

(1)若函数f(x)在区间(a,a+
1
3
)(a>0)
上存在极值点,求实数a的取值范围;
(2)知果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)求证:[(n+1)!]2>(n+1)en-2+
2
n+1
,这里n∈N*,(n+1)!=1×2×3×…×(n+1),e为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程;
(Ⅲ)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知四棱锥P-ABCD的三视图如图所示,则四棱锥P-ABCD的四个侧面中面积最大的是(  )

查看答案和解析>>

同步练习册答案