精英家教网 > 高中数学 > 题目详情
在直四棱柱ABCD-A1B1C1D1中,底面是有一个角为60°的菱形,AA1=AB,从顶点中取出三个能构成不同直角三角形的个数有(  )个.
分析:由题意可得,这3个顶点必须在直四棱柱的4个侧面内,或在2个互相垂直的对角面ACC1A1和 BDD1B1内,故有6C43 个.
解答:解:在直四棱柱ABCD-A1B1C1D1中,底面是有一个角为60°的菱形,AA1=AB,
故在直四棱柱ABCD-A1B1C1D1的4个侧面都是正方形,对角面ACC1A1和 BDD1B1 中一个是矩形,另一个是正方形.
直四棱柱的上下底面和其它的对角面不是矩形.
而每个正方形的4个顶点中任意三点的连线都构成直角三角形,共有5C43=20个.
矩形的4个顶点中任意取3个点的连线也都构成直角三角形,共有C43=4个.
根据分类计数原理,构成不同直角三角形的个数有 5C43+C43=24个,
故选:C.
点评:本题主要考组合及两个基本原理,组合数公式的应用,体现了分类讨论的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、G、F分别是棱B1B、D1D、DA的中点.
(Ⅰ)求证:平面AD1E∥平面BGF;
(Ⅱ)求证:D1E⊥平面AEC.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在直四棱柱ABCD-A1B1C1D1中,已知AB∥CD,AB=AD=1,D1D=CD=2,AB⊥AD.
(I)求证:BC⊥面D1DB;
(II)求D1B与平面D1DCC1所成角的大小;
(III)在BB1上是否存在一点F,使F到平面D1BC的距离为
3
3
,若存在,则指出该点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.
(1)求证:BF∥平面AD1E;
(2)求证:D1E⊥平面AEC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直四棱柱ABCD-A1B1C1D1中,点E,F分别在AA1,CC1上,且AE=
3
4
AA1,CF=
1
3
CC1,点A,C到BD的距离之比为3:2,则三棱锥E-BCD和F-ABD的体积比
VE-BCD
VF-ABD
=
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在直四棱柱ABCD-A1B1C1D1中,底面ABCD为直角梯形,∠BAD=∠ADC=90°,AB=AD=1,CD=CC1=2,E为棱AA1的中点,F为棱BB1上的动点.
(Ⅰ)试确定点F的位置,使得D1E⊥DF;
(Ⅱ)在(Ⅰ)的条件下,求CF与平面EFD1所成角的大小.

查看答案和解析>>

同步练习册答案