精英家教网 > 高中数学 > 题目详情
2.已知tanα=2,则$\frac{2sinα+cosα}{sinα-cosα}$=(  )
A.2B.5C.1D.-1

分析 依题意,将所求关系式中的“弦”化“切”即可求得答案.

解答 解:由于tanα=2,则$\frac{2sinα+cosα}{sinα-cosα}$=$\frac{2tanα+1}{tanα-1}$=5,
故选:B.

点评 本题考查同角三角函数基本关系式及变形公式的应用,“弦”化“切”是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.比较下列各组三角函数值的大小:
  (1)sin35°,sin55°;
  (2)cos$\frac{3π}{5}$,cos$\frac{4π}{5}$;
  (3)tan1,tan2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在某次测量中得到的A样本数据如下;74,74,79,79,86,87,87,90,91,92.若B样本数据恰好是A样本数据每个都加5后所得数据,则A,B两样本的下列数字特征对应相同的是(  )
A.众数B.平均数C.中位数D.标准差

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\frac{cosx}{\sqrt{1-si{n}^{2}x}}$+$\frac{\sqrt{1-co{s}^{2}x}}{sinx}$的值域为{2,0,-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在复平面内,复数3-4i,2-6i对应向量分别为$\overrightarrow{OA},\overrightarrow{OB}$.其中O是坐标原点,向量$\overrightarrow{BA}$对应复数z,则|z|的值为(  )
A.5B.$\sqrt{5}$C.$\sqrt{101}$D.$\sqrt{29}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.P是平面ABC外一点,PO⊥平面ABC,垂足为O,若PA,PB,PC两辆互相垂直,则O是△ABC的(  )
A.垂心B.内心C.重心D.外心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,AD⊥DC,侧棱PD⊥底面ABCD,且AB=AD=1,PD=DC=2,E是PC的中点.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)线段PB上是否存在一点Q,使得PC⊥平面ADQ?若存在,求出$\frac{PB}{QB}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图:在三棱柱ABC-A1B1C1中,已知AA1⊥底面ABC,AC⊥BC.四边形BB1C1C为正方形,设AB1的中点为D,B1C∩BC1=E.求证
(1)DE∥平面AA1C1C
(2)BC1⊥平面AB1C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x-1|+|x-2|(x∈R).
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;q:函数y=(m2-3)x是增函数,若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

同步练习册答案