【题目】如图,已知抛物线E:()与圆O:相交于A,B两点,且.过劣弧上的动点作圆O的切线交抛物线E于C,D两点,分别以C,D为切点作抛物线E的切线,,相交于点M.
(1)求抛物线E的方程;
(2)求点M到直线距离的最大值.
【答案】(1);(2).
【解析】
(1)利用求得圆心到弦的距离为1,即可求得点的坐标为,将代入抛物线方程可得,问题得解
(2)设,,分别求得与的方程,即可求得点的横、纵坐标为,,联立直线的方程和抛物线方程可得:,,即可得点的横、纵坐标为,,再由点到直线距离公式可得点M到直线的距离为:,,利用其单调性可得:,问题得解
(1),且B在圆上,
所以圆心到弦的距离
由抛物线和圆的对称性可得,
代入抛物线可得,解得,
∴抛物线E的方程为;
(2)设,,
由,可得,
∴,
则的方程为:,即——①,
同理的方程为:——②,
联立①②解得,,
又直线与圆切于点,
易得方程为,其中,满足,,
联立,化简得,
∴,,
设,则,,
∴点M到直线的距离为:
,
易知d关于单调递减,,
即点M到直线距离的最大值为.
科目:高中数学 来源: 题型:
【题目】已知椭圆的上顶点为A,右焦点为F,O是坐标原点,是等腰直角三角形,且周长为.
(1)求椭圆的方程;
(2)若直线l与AF垂直,且交椭圆于B,C两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中心在原点的椭圆E的一个焦点与抛物线的焦点关于直线对称,且椭圆E与坐标轴的一个交点坐标为.
(1)求椭圆E的标准方程;
(2)过点的直线l(直线的斜率k存在且不为0)交E于A,B两点,交x轴于点P点A关于x轴的对称点为D,直线BD交x轴于点Q.试探究是否为定值?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】疫情后,为了支持企业复工复产,某地政府决定向当地企业发放补助款,其中对纳税额在万元至万元(包括万元和万元)的小微企业做统一方案.方案要求同时具备下列两个条件:①补助款(万元)随企业原纳税额(万元)的增加而增加;②补助款不低于原纳税额(万元)的.经测算政府决定采用函数模型(其中为参数)作为补助款发放方案.
(1)判断使用参数是否满足条件,并说明理由;
(2)求同时满足条件①、②的参数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB//DC,AB=2CD,∠BCD=90°.
(1)求证:AD⊥PB;
(2)求点C到平面PAB的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:,倾斜角为锐角的直线l过点与单位圆相切.
(1)求曲线C的直角坐标方程和直线l的参数方程;
(2)设直线l与曲线C交于A,B两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知在棱长为1的正方体中,,,分别是线段,,的中点,又,分别在线段,上,且.设平面平面,现有下列结论:
①平面;
②;
③直线与平面不垂直;
④当变化时,不是定直线.
其中不成立的结论是______.(填序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com