精英家教网 > 高中数学 > 题目详情

【题目】若函数满足:对于任意正数,都有,且,则称函数为“L函数”.

1)试判断函数是否是“L函数”;

2)若函数为“L函数”,求实数a的取值范围;

(3)若函数L函数,且,求证:对任意,都有

【答案】(1)L函数”. 不是L函数”.(2)(3)见解析

【解析】(1)对于函数,当时,

,所以

是“L函数”.

对于函数,当时,

不是“L函数”.

(2)当时,由是“L函数”,

可知,即对一切正数恒成立,

,可得对一切正数恒成立,所以

,可得

,又,故

对一切正数恒成立,可得,即

综上可知,a的取值范围是

(3)由函数为“L函数”, 可知对于任意正数

都有,且

,可知,即

故对于正整数k与正数,都有

对任意,可得,又

所以

同理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】上海市松江区天马山上的护珠塔因其倾斜度超过意大利的比萨斜塔而号称世界第一斜塔.兴趣小组同学实施如下方案来测量塔的倾斜度和塔高:如图,记O点为塔基、P点为塔尖、点P在地面上的射影为点H.在塔身OP射影所在直线上选点A,使仰角∠HAP=45°,过O点与OA120°的地面上选B点,使仰角∠HPB=45°(点ABO都在同一水平面上),此时测得∠OAB=27°AB之间距离为33.6米.试求:

1)塔高(即线段PH的长,精确到0.1米);

2)塔身的倾斜度(即POPH的夹角,精确到0.1°).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地政府为改善居民的住房条件,集中建设一批经适楼房.用了1400万元购买了一块空地,规划建设8幢楼,要求每幢楼的面积和层数等都一致,已知该经适房每幢楼每层建筑面积均为250平方米,第一层建筑费用是每平方米3000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加80元.

1)若该经适楼房每幢楼共层,总开发费用为万元,求函数的表达式(总开发费用=总建筑费用+购地费用);

2)要使该批经适房的每平方米的平均开发费用最低,每幢楼应建多少层?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线上动点到定点与定直线的距离之比为常数

1)求曲线的轨迹方程;

2)设圆心为的圆与曲线交于点与点,求的最小值,并求此时圆的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,下列个结论正确的是__________(把你认为正确的答案全部写上).

(1)任取,都有

(2)函数上单调递增;

(3),对一切恒成立;

(4)函数个零点;

(5)若关于的方程有且只有两个不同的实根,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥S-ABCD中,四边形ABCD是菱形,,点PQM分别是线段SDPDAP的中点,点N是线段SB上靠近B的四等分点.

1)若R在直线MQ上,求证:平面ABCD

2)若平面ABCD,求平面SAD与平面SBC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线经过点,曲线的直角坐标方程为.

1)求曲线的普通方程,曲线的极坐标方程;

2)若是曲线上两点,当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面均是等腰直角三角形,分别为的中点.

)求证:平面

)求证:

)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,如果存在给定的实数对,使得恒成立,则称为“函数”;

1)判断函数是否是“函数”;

2)若是一个“函数”,求出所有满足条件的有序实数对

3)若定义域为的函数是“函数”,且存在满足条件的有序实数对,当时,的值域为,求当的值域;

查看答案和解析>>

同步练习册答案