【题目】已知是满足下述条件的所有函数组成的集合:对于函数定义域内的任意两个自变量、,均有成立.
(1)已知定义域为的函数,求实数、的取值范围;
(2)设定义域为的函数,且,求正实数的取值范围;
(3)已知函数的定义域为,求证:.
科目:高中数学 来源: 题型:
【题目】一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨、硝酸盐18吨;生产1车皮乙种肥料的主要原料是磷酸盐1吨、硝酸盐15吨,现库存磷酸盐10吨、硝酸盐66吨,在此基础上生产这两种混合肥料。如果生产1车皮甲种肥料,产生的利润为12000元;生产1车皮乙种肥料,产生的利润为7000元。那么可产生最大的利润是__________元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数
(1)若,,求不等式的解;
(2)对任意,,试确定函数的最小值(用含,的代数式表示),若正数、满足,则、分别取何值时,有最小值,并求出此最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知公差的等差数列的前项和为,且满足,.
(1)求数列的通项公式;
(2)求证:是数列中的项;
(3)若正整数满足如下条件:存在正整数,使得数列,,为递增的等比数列,求的值所构成的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中, , , ,若该三棱锥的四个顶点均在同一球面上,则该球的体积为( )
A. B. C. D.
【答案】D
【解析】在三棱锥中,因为, , ,所以,则该几何体的外接球即为以为棱长的长方体的外接球,则 ,其体积为 ;故选D.
点睛:在处理几何体的外接球问题,往往将所给几何体与正方体或长方体进行联系,常用补体法补成正方体或长方体进行处理,本题中由数量关系可证得 从而几何体的外接球即为以为棱长的长方体的外接球,也是处理本题的技巧所在.
【题型】单选题
【结束】
21
【题目】已知函数,则的大致图象为( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆经过不同的三点在第三象限),线段的中点在直线上.
(Ⅰ)求椭圆的方程及点的坐标;
(Ⅱ)设点是椭圆上的动点(异于点且直线分别交直线于两点,问是否为定值?若是,求出定值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com