精英家教网 > 高中数学 > 题目详情
若函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=lnx+2x-6,
(1)求f(x)的解析式;
(2)试判断f(x)的零点个数.
分析:(1)利用奇函数的性质f(x)=-f(-x),f(0)=0即可得出;
(2)当x>0时,函数f(x)=lnx+2x-6单调递增,且f(2)<0,f(3)>0,利用函数零点判定定理即可得出.再利用奇函数的性质即可得出当x<0时零点的个数,进而得到函数f(x)零点的个数.
解答:解:(1)设x<0,则-x>0.
∴f(x)=-f(-x)=-[ln(-x)-2x-6]=-ln(-x)+2x+6.
又f(0)=0.
∴f(x)=
lnx+2x-6,x>0
0,x=0
-ln(-x)+2x+6,x<0

(2)∵当x>0时,函数f(x)=lnx+2x-6单调递增,
且f(2)=ln2+2×2-6=ln2-2<0,f(3)=ln3+6-6=ln3>0,
∴函数f(x)在(0,+∞)上存在唯一零点.
同理:当x<0时,在(-∞,0)上也存在唯一零点.
综上可知:f(x)的零点个数为3.
点评:本题考查了函数的奇偶性、函数的零点判定定理,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)为定义在R上的奇函数,且x∈(0,+∞)时,f(x)=lg(x+1),求f(x)的表达式,并画出示意图.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f (x)为定义在区间[-6,6]上的偶函数,且f(3)>f(1),则下列各式一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)为定义在[0,+∞)上的增函数,定义在R上的函数g(x)满足g(x)=f(|x|),则不等式g(
2x
)>g(1)
的解集为
(-2,0)∪(0,2)
(-2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)为定义在R上的奇函数,且x∈(0,+∞)时,f(x)=2x
(1)求f(x)的表达式;
(2)在所给的坐标系中直接画出函数f(x)图象.(不必列表)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台二模)若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=2x-1-3,则不等式f(x)>1的解集为
(-2,0)∪(3,+∞)
(-2,0)∪(3,+∞)

查看答案和解析>>

同步练习册答案