精英家教网 > 高中数学 > 题目详情
20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点到左焦点的最大距离为$\sqrt{3}$+$\sqrt{2}$,且点M(1,e)在椭圆C上,其中e为椭圆C的离心率.
(1)求椭圆C的方程;
(2)如图所示,A、B是椭圆C上的两点,且|AB|=$\sqrt{3}$,求△AOB的面积的取值范围.

分析 (1)根据椭圆上的点到左焦点为F的最大距离是$\sqrt{3}$+$\sqrt{2}$,M(1,e)在椭圆上,建立方程组,即可求椭圆的方程;
(2)分类讨论,设出直线方程,代入椭圆方程,利用韦达定理,表示出面积,利用配方法可求最值,从而可得结论.

解答 解:(1)由题意,$\left\{\begin{array}{l}{a+c=\sqrt{3}+\sqrt{2}}\\{\frac{1}{{a}^{2}}+\frac{{c}^{2}}{{a}^{2}{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a2=3,b2=1
∴椭圆的方程为$\frac{{x}^{2}}{3}+{y}^{2}=1$;
(2)设A(x1,y1),B(x2,y2),△ABO的面积为S.
如果AB⊥x轴,由对称性不妨记A的坐标为($\frac{\sqrt{3}}{2},\frac{\sqrt{3}}{2}$),此时S=$\frac{1}{2}$•$\frac{\sqrt{3}}{3}•\sqrt{3}$=$\frac{3}{4}$;
如果AB不垂直于x轴,设直线AB的方程为y=kx+m,代入椭圆方程,可得x2+3(kx+m)2=3,
即(1+3k2)x2+6kmx+3m2-3=0,
又△=36k2m2-4(1+3k2)(3m2-3)>0,
∴x1+x2=-$\frac{6km}{1+3{k}^{2}}$,x1x2=$\frac{3{m}^{2}-3}{1+3{k}^{2}}$,
∴(x1-x22=(x1+x22-4x1x2=$\frac{12(1+3{k}^{2}-{m}^{2})}{(1+3{k}^{2})^{2}}$ ①,
由|AB|=$\sqrt{1+{k}^{2}}|{x}_{1}-{x}_{2}|$及|AB|=$\sqrt{3}$,得(x1-x22=$\frac{3}{1+{k}^{2}}$ ②,
由①②可得m2=(1+3k2)-$\frac{(1+3{k}^{2})^{2}}{4(1+{k}^{2})}$.
又原点O到直线AB的距离为$\frac{|m|}{\sqrt{1+{k}^{2}}}$,
∴S=$\frac{1}{2}$•$\frac{|m|}{\sqrt{1+{k}^{2}}}$•$\sqrt{3}$,
因此S2=-$\frac{3}{16}$$(\frac{1+3{k}^{2}}{1+{k}^{2}}-2)^{2}+\frac{3}{4}$,
∵$\frac{1+3{k}^{2}}{1+{k}^{2}}=3-\frac{2}{1+{k}^{2}}∈[1,3)$,
∴$\frac{1+3{k}^{2}}{1+{k}^{2}}-2∈[-1,1)$,
则${S}^{2}∈[\frac{9}{16},\frac{3}{4}]$,
∴S$∈[\frac{3}{4},\frac{\sqrt{3}}{2}]$.
故△AOB的面积的取值范围是$[\frac{3}{4},\frac{\sqrt{3}}{2}]$.

点评 本题考查椭圆的几何性质,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lg(2+x)+lg(2-x),
(Ⅰ)求函数f(x)的定义域及值域;
(Ⅱ)判断函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列关系式中,成立的是(  )
A.${log_3}4>1>{log_{\frac{1}{3}}}10$B.${log_{\frac{1}{3}}}10>1>{log_3}4$
C.${log_3}4>{log_{\frac{1}{3}}}10>1$D.${log_{\frac{1}{3}}}10>{log_3}4>1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=2sinx$co{s}^{2}\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π)在x=π处取最小-1.
(1)求φ的值;若x∈[-$\frac{π}{4}$,$\frac{π}{4}$],求f(x)的单减区间;
(2)把f(x)的图象上所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平移$\frac{π}{6}$个单位得的图象g(x),求g(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.用导数证明:$\frac{si{n}^{8}x}{8}$-$\frac{co{s}^{8}x}{8}$-$\frac{si{n}^{6}x}{3}$+$\frac{co{s}^{6}x}{6}$+$\frac{si{n}^{4}x}{4}$=$\frac{1}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点P($\sqrt{2}$,1),离心率e=$\frac{{\sqrt{6}}}{3}$.
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A,B两点,试问:在x轴上是否存在定点M,使得$\overrightarrow{MA}•\overrightarrow{MB}$的值与k的取值无关?若存在,请求出该定点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.奇函数f(x)满足对任意x∈R都有f(2+x)+f(2-x)=0;且f(1)=-9,求f(2012)+f(2013)+f(2014)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设复数z1,z2满足z1z2+2iz1-2iz2+1=0,若z1,z2满足$\overline{{z}_{2}}$-z1=2i,求z1,z2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数y=3cos(kx+$\frac{π}{4}$)(k∈N+),若对任意的m∈R,在[m,m+1]之间f(x)至少取得最大值、最小值各一次,求实数k的最小值,并就最小的k值求出最小正周期及对称中心.

查看答案和解析>>

同步练习册答案