【题目】数列中,,,其中为常数.
(1)若成等比数列,求的值;
(2)是否存在,使得数列为等差数列?并说明理由.
【答案】(1)(2)
【解析】
(1)由已知条件分别计算出的值,然后代入等比数列中求出结果
(2)解法1:通过已知条件得到奇数项和偶数项都成等差数列,分别求出其通项公式,由数列为等差数列,求出的值;解法2:假设存在,由数列为等差数列,则,计算出通项公式,结合条件计算出结果
(1)由可得
所以,,
又成等比数列,
所以,即,又,故.
(2)解法1:当时,,,
相减得,
所以是首项为1,公差为的等差数列,是首项为,公差为的等差数列,
故
因此要使得数列为等差数列,则,得
即存在,使得数列为等差数列.
解法2:假设存在,使得数列为等差数列,则,即,解得,
公差 ,因此,
此时验证,满足条件,
即存在,使得数列为等差数列.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).M是曲线上的动点,将线段OM绕O点顺时针旋转得到线段ON,设点N的轨迹为曲线.以坐标原点O为极点,轴正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)在(1)的条件下,若射线与曲线分别交于A, B两点(除极点外),且有定点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某村电费收取有以下两种方案供农户选择:
方案一:每户每月收取管理费2元,月用电量不超过30度时,每度0.5元;超过30度时,超过部分按每度0.6元收取:
方案二:不收取管理费,每度0.58元.
(1)求方案一的收费L(x)(元)与用电量x(度)间的函数关系.若老王家九月份按方案一缴费35元,问老王家该月用电多少度?
(2)老王家该月用电量在什么范围内,选择方案一比选择方案二好?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市在进行创建文明城市的活动中,为了解居民对“创文”的满意程度,组织居民给活动打分(分数为整数.满分为100分).从中随机抽取一个容量为120的样本.发现所有数据均在内.现将这些分数分成以下6组并画出了样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形,回答下列问题:
(1)算出第三组的频数.并补全频率分布直方图;
(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com