精英家教网 > 高中数学 > 题目详情

【题目】下列各对直线不互相垂直的是 (  )

A. l1的倾斜角为120°,l2过点P(1,0),Q(4, )

B. l1的斜率为-l2过点P(1,1),Q

C. l1的倾斜角为30°,l2过点P(3, )Q(42)

D. l1过点M(1,0),N(4,-5),l2过点P(-6,0),Q(-1,3)

【答案】C

【解析】Al1的倾斜角为120°l2过点P(10)Q(4 )kPQ=,故两直线垂直;

Bl2过点P(11)QkPQ=故两条直线垂直。

C kPQ=,所以l1不与l2垂直.

Dl1过点M(10)N(4-5) l2过点P(-60)Q(-13)kPQ=,故两条直线垂直。

故答案为C。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知隧道的截面是半径为4.0 m的半圆车辆只能在道路中心线一侧行驶一辆宽为2.7 m高为3 m的货车能不能驶入这个隧道假设货车的最大宽度为a m那么要正常驶入该隧道货车的限高为多少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCDA1B1C1D1的棱长为aMBD1的中点,NA1C1上,且满足|A1N|=3|NC1|.

(1)求MN的长;

(2)试判断△MNC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:

所成角的正切值是

的体积是

平面平面

直线与平面所成角为

其中正确的有 .(填写你认为正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=90°,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG.

(1)求证:EC⊥CD.

(2)求证:AG∥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A(n)表示正整数n的个位数,an=A(n2)﹣A(n),A为数列{an}的前202项和,函数f(x)=ex﹣e+1,若函数g(x)满足f[g(x)﹣ ]=1,且bn=g(n)(n∈N*),则数列{bn}的前n项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.

(1)请按字母FGH标记在正方体相应地顶点处(不需要说明理由)

(2)判断平面BEG与平面ACH的位置关系.并说明你的结论;

(3)证明:直线DF平面BEG.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB是☉O的直径,点C是☉O上的动点(点C不与A,B重合),过动点C的直线VC垂直于☉O所在的平面,D,E分别是VA,VC的中点,则下列结论中正确的是________(填写正确结论的序号).

(1)直线DE∥平面ABC.

(2)直线DE⊥平面VBC.

(3)DE⊥VB.

(4)DE⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A-0),B0-,其中k≠0k≠±1,直线l经过点P(10)AB的中点.

(1)求证:AB关于直线l对称.

(2)1<k<时,求直线ly轴上的截距b的取值范围.

查看答案和解析>>

同步练习册答案