精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点为,点在椭圆上.

(1)设点到直线的距离为,证明:为定值;

(2)若是椭圆上的两个动点(都不与重合),直线的斜率互为相反数,求直线的斜率(结果用表示)

【答案】(1)见解析;(2)

【解析】

1)点在椭圆上,得,化简,即可证明;(2)当时,则,直线的斜率一定存在.

,直线的斜率为,则的方程为,即,与椭圆的方程,联立组成方程组,消去,由韦达定理得同理得,即可求得的值

1)由已知,得,所以,即

因为点在椭圆上,所以,即

所以为定值.

2)当时,则,直线的斜率一定存在.

,直线的斜率为,则的方程为,即,与椭圆的方程,联立组成方程组,消去

整理得

由韦达定理,得,于是

根据直线的斜率为,将上式中的代替,

于是

注意到,于是

因此,直线的斜率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足:,其中.

1)求证:数列是等比数列;

2)令,求数列的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年12月1日,贵阳市地铁一号线全线开通,在一定程度上缓解了出行的拥堵状况.为了了解市民对地铁一号线开通的关注情况,某调查机构在地铁开通后的某两天抽取了部分乘坐地铁的市民作为样本,分析其年龄和性别结构,并制作出如下等高条形图:

根据图中(岁以上含岁)的信息,下列结论中不一定正确的是( )

A. 样本中男性比女性更关注地铁一号线全线开通

B. 样本中多数女性是岁以上

C. 岁以下的男性人数比岁以上的女性人数多

D. 样本中岁以上的人对地铁一号线的开通关注度更高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为π,它的一个对称中心为(,0)

(1)求函数y=f(x)图象的对称轴方程;

(2)若方程f(x)=在(0,π)上的解为x1,x2,求cos(x1-x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.杨辉三角中,第行的所有数字之和为,若去除所有为1的项,依次构成数列,则此数列的前55项和为( )

A. 4072B. 2026C. 4096D. 2048

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).

(1)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本数据中随机抽取一个不超过21的数据记为,求的概率;

(2)从所有咀嚼槟榔颗数在20颗以上(包含20颗)的同学中随机抽取3人,求被抽到班同学人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是(

A.直线与直线相互平行的充分不必条件

B.直线垂直平面内无数条直线直线垂直于平面的充分条件

C.已知为非零向量,则的充要条件

D.:存在.:任意

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论函数的单调性;

2)若关于x的方程有唯一的实数解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“沉鱼、落雁、闭月、羞花”是由精彩故事组成的历史典故.“沉鱼”,讲的是西施浣纱的故事;“落雁”,指的就是昭君出塞的故事;“闭月”,是述说貂蝉拜月的故事;“羞花”,谈的是杨贵妃醉酒观花时的故事.她们分别是中国古代的四大美女.某艺术团要以四大美女为主题排演一部舞蹈剧,已知乙扮演杨贵妃,甲、丙、丁三人抽签决定扮演的对象,则甲不扮演貂蝉且丙扮演昭君的概率为(

A.B.

C.D.

查看答案和解析>>

同步练习册答案