【题目】已知点与点在直线的两侧,给出以下结论:①;②当时,有最小值,无最大值;③;④当且时,的取值范围是,正确的个数为( )
A.1个B.2个C.3个D.以上都不对
【答案】B
【解析】
根据点M(a,b)与点在直线3x﹣4y+5=0的两侧,可以画出点M(a,b)所在的平面区域,进而结合二元一次不等式,两点之间距离公式的几何意义,及两点之间连线斜率的几何意义,逐一分析四个命题得结论.
∵点M(a,b)与点在直线3x﹣4y+5=0的两侧,如图所示:点M(a,b)在直线3x﹣4y+5=0左上方的区域.
∴(3a﹣4b+5)(3×1+4+5)<0,即3a﹣4b+5<0,故①错误;
当a>0时,由图可知,M的区域,不含边界,∴a+b即无最小值,也无最大值,故②错误;
设原点到直线3x﹣4y+5=0的距离为d,则d=,则a2+b2>1,故③正确;
当a>0且a≠1时,表示点M(a,b)与P(1,﹣1)连线的斜率,由图可知,
当a=0,b=时,=,又直线3x﹣4y+5=0的斜率为,
故的取值范围为(﹣∞,﹣)∪(,+∞),故④正确.
∴正确命题的个数是2个.
故选:B.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当a=1时,求函数在(2,)处的切线方程:
(2)当a=2时,求函数的单调区间和极值;
(3)若在上是单调增函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取100件产品作为样本称出它们的质量(单位:毫克),质量值落在的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.
产品质量/毫克 | 频数 |
3 | |
9 | |
19 | |
35 | |
22 | |
7 | |
5 |
(1)由以上统计数据完成下面列联表,能否在犯错误的概率不超过0.15的前提下认为产品的包装合格与两条自动包装流水线的选择有关?
甲流水线 | 乙流水线 | 总计 | |
合格品 | |||
不合格品 | |||
总计 |
附表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,)
(2)按照以往经验,在每小时次品数超过180件时,产品的次品率会大幅度增加,为检测公司的生产能力,同时尽可能控制不合格品总量,公司工程师抽取几组一小时生产产品数据进行次品情况检查分析,在(单位:百件)件产品中,得到次品数量(单位:件)的情况汇总如下表所示:
(百件) | 0.5 | 2 | 3.5 | 4 | 5 |
(件) | 2 | 14 | 24 | 35 | 40 |
根据公司规定,在一小时内不允许次品数超过180件,请通过计算分析,按照公司的现有生产技术设备情况,判断可否安排一小时生产2000件的任务?
(参考公式:用最小二乘法求线性回方程的系数公式
;)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地的出租车价格规定:起步费元,可行公里,公里以后按每公里元计算,可再行公里;超过公里按每公里元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定。
(1)若小明乘出租车从学校到家,共公里,请问他应付出租车费多少元?
(2)求车费(元)与行车里程(公里)之间的函数关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”;
丁说:“是作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,底面为矩形的四棱锥,底面,,,是的中点.
(1)求四棱锥的体积;
(2)求与面所成角;
(3)在边上是否存在一点,使得到平面的距离为?若存在,求出;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一般来说,一个人脚掌越长,他的身高就越高,现对10名成年人的脚掌与身高进行测量,得到数据(单位:cm)作为样本如表所示:
脚掌长() | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
身高() | 141 | 146 | 154 | 160 | 169 | 176 | 181 | 188 | 197 | 203 |
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程;
(2)若某人的脚掌长为26.5cm,试估计此人的身高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人进行进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
(参考数据:,,,,)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com