精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}(n=1,2,3,4,5)满足a1=a5=0,且当2≤k≤5时,(ak﹣ak﹣12=1,令S= , 则S不可能的值是(  )
A.4
B.0
C.1
D.-4

【答案】C
【解析】由题设,满足条件的数列{an}的所有可能情况有:
(1)0,1,2,1,0.此时S=4;
(2)0,1,0,1,0.此时S=2;
(3)0,1,0,﹣1,0.此时S=0;
(4)0,﹣1,﹣2,﹣1,0.此时S=﹣4;
(5)0,﹣1,0,1,0.此时S=0;
(6)0,﹣1,0,﹣1,0.此时S=﹣2.
所以,S的所有可能取值为:﹣4,﹣2,0,2,4.
故不可能的S=1,
故选:C.
【考点精析】掌握数列的前n项和是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC面积S和三边a,b,c满足:S=a2﹣(b﹣c)2 , b+c=8,则△ABC面积S的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种树苗栽种时高度为A(A为常数)米,栽种n年后的高度记为f(n).经研究发现f(n)近似地满足 f(n),其中ab为常数,n∈Nf(0)A.已知栽种3年后该树木的高度为栽种时高度的3倍.

1)栽种多少年后,该树木的高度是栽种时高度的8倍;

2)该树木在栽种后哪一年的增长高度最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市A,B两所中学的学生组队参加辩论赛,A中学推荐3名男生,2名女生,B中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队

1求A中学至少有1名学生入选代表队的概率.

2某场比赛前从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X得分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).
(1)求曲线C的直角坐标方程与直线l的普通方程;
(2)设曲线C与直线l相交于P、Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向左平移个单位,得到函数的图象,则下列说法正确的是( ).

A. B. 直线的图象的一条对称轴

C. 的最小正周期为D. 为奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1 , 焦点为F2;以F1 , F2为焦点,离心率e=的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动.
当m=1时,求椭圆C2的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面ABCD是正方形,AC与BD交于点O,底面ABCD,F为BE的中点,

(1)求证:平面ACF

(2)求BE与平面ACE的所成角的正切值;

(3)在线段EO上是否存在点G,使CG平面BDE ?若存在,求出EG:EO的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc∈(0+∞).

1)若a=6b=5c=4ABCBCCAAB的长,证明:cosAQ

2)若abc分别是ABCBCCAAB的长,若abcQ时,证明:cosAQ

3)若存在λ∈(-22)满足c2=a2+b2ab,证明:abc可以是一个三角形的三边长.

查看答案和解析>>

同步练习册答案