精英家教网 > 高中数学 > 题目详情
13.已知实数x,y满足不等式组$\left\{\begin{array}{l}2x-y+2≥0\\ x-4y+1≤0\\ x+y-2≤0\end{array}\right.$,则z=3|x|+y的最小值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

分析 由线性约束条件画出可行域,转化目标函数为分段函数,根据角点法,求出目标函数的最小值.

解答 解:由约束条件$\left\{\begin{array}{l}2x-y+2≥0\\ x-4y+1≤0\\ x+y-2≤0\end{array}\right.$作出可行域如图,

z=3|x|+y,可得y=-3|x|+z=$\left\{\begin{array}{l}{-3x+z,x≥0}\\{3x+z,x<0}\end{array}\right.$,
由$\left\{\begin{array}{l}{2x-y+2=0}\\{x-4y+1=0}\end{array}\right.$,得A(-1,0),此时z=3,
由$\left\{\begin{array}{l}{2x-y+2=0}\\{x+y-2=0}\end{array}\right.$,可得B(0,2),此时z=2.
由$\left\{\begin{array}{l}{x-4y+1=0}\\{x+y-2=0}\end{array}\right.$,可得C($\frac{7}{5},\frac{3}{5}$),此时z=$\frac{24}{5}$,x-4y+1=0时,x=0,y=$\frac{1}{4}$,此时z=$\frac{1}{4}$.
∴z=3|x|+y的最小值为$\frac{1}{4}$,
故选:A.

点评 在线性规划问题中目标函数取得最值的点一定是区域的顶点和边界,在边界上的值也等于在这个边界上的顶点的值,故在解答,只要能把区域的顶点求出,直接把顶点坐标代入进行检验即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+2x({x≥0})\\ g(x)({x<0})\end{array}$为奇函数,则g(-1)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,已知曲线C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.(θ为参数)$,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.
(1)将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的$\sqrt{3}$、2倍后得到曲线C2;试写出直线l的直角坐标方程和曲线C2的参数方程;
(2)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知三棱锥S-ABC的底面是以AB为斜边的等腰直角三角形,AB=2,SA=SB=SC=2,则三棱锥的外接球的球心到平面ABC的距离是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知立方体ABCD-A'B'C'D',E,F,G,H分别是棱AD,BB',B'C',DD'中点,从中任取两点确定的直线中,与平面AB'D'平行的有(  )条.
A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=$\frac{x}{1+|x|}$,则使得f(x2-2x)>f(3x-6)成立的x的取值范围是(  )
A.(-∞,2)∪(3,+∞)B.(2,3)C.(-∞,2)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知两个函数f(x)=log4(a$•{2}^{x}-\frac{4}{3}a$)(a≠0),g(x)=log4(4x+1)-$\frac{1}{2}x$的图象有且只有一个公共点,则实数a的取值范围是{a|a>1或a=-3}..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中正确的是(  )
A.过三点确定一个平面B.四边形是平面图形
C.三条直线两两相交则确定一个平面D.两个相交平面把空间分成四个区域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=$\frac{1}{2}$x2-alnx(a∈R),g(x)=x2-(a+1)x.
(1)求函数f(x)的单调区间;
(2)当a≥0时,讨论函数f(x)与g(x)的图象的交点个数.

查看答案和解析>>

同步练习册答案