精英家教网 > 高中数学 > 题目详情

【题目】,m 是两条不同的直线,m 垂直于平面 ,则“ ”是“" 的 ( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件

【答案】B
【解析】若,因为m垂直平面,则,又m垂直于平面,则,所以“”是的必要不充分条件,故选B。
【考点精析】利用空间点、线、面的位置和空间点、线、面的位置对题目进行判断即可得到答案,需要熟知如果一条直线上的两点在一个平面内,那么这条直线在此平面内;过不在一条直线上的三点,有且只有一个平面;如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线);(平行线的传递性)平行与同一直线的两条直线互相平行;如果一条直线上的两点在一个平面内,那么这条直线在此平面内;过不在一条直线上的三点,有且只有一个平面;如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线);(平行线的传递性)平行与同一直线的两条直线互相平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:

(1)这批游客的人数是多少?原计划租用多少辆45座客车?

(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)“sin=cos”是“cos2=0”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·江苏)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1 , 设AB1的中点为D,B1CBC1=E.求证:

(1)DE∥平面AA1C1C
(2)BC1⊥AB1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球A1, A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖。
(1)用球的标号列出所有可能的摸出结果;
(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆(a>b>0)过点(0,),且离心率为

(Ⅰ)求椭圆E的方程;
(II)设直线x my 1,(m R)交椭圆E与A,B两点,判断点G(-,0)与以线段AB为直径的圆的位置关系,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面,点分别是的中点。

(1)求证:平面
(2)求证:平面平面
(3)求直线与平面所成角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数对定义域内的每一个值在其定义域内都存在唯一的使成立,则称该函数为“依赖函数”.

(1)判断函数是否为“依赖函数”,并说明理由;

(2)若函数在定义域上为“依赖函数”,求实数乘积的取值范围;

(3)已知函数在定义域上为“依赖函数”,若存在实数使得对任意的有不等式都成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,Xn是曲线y=X2n+2+1在点(1,2)处的切线与x轴焦点的横坐标
(1)求数列{xn}的通项公式;
(2)记Tn=....,证明Tn

查看答案和解析>>

同步练习册答案