精英家教网 > 高中数学 > 题目详情
(本小题满分13分)
如图6,平行四边形中,,沿
起,使二面角是大小为锐角的二面角,设在平面上的射影为
(1)当为何值时,三棱锥的体积最大?最大值为多少?
(2)当时,求的大小.
解:(1)由题知在平面上的射影,
平面,∴
,                                       ………………………2分
                   
             ………………4分
,                            ……………………5分
当且仅当,即时取等号,
∴当时,三棱锥的体积最大,最大值为.        …………6分

(2)(法一)连接,      ……………………7分
平面
平面
,        ………………………9分


, ………………11分


,         …………………………………………………12分
中,,得.…………………13分
(法二) 过,则为矩形,
为原点,所在直线分别为轴、
轴、轴,建立如图所示的空间直角坐标系,

, ………9分
于是,        ……………10分
,得
,          ……………………12分
,又为锐角,∴ .          ………………………………13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(本题满分12分)
如图甲,直角梯形中,,点分别在上,且,现将梯形沿折起,使平面与平面垂直(如图乙).
(Ⅰ)求证:平面
(Ⅱ)当的长为何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
如图所示,在棱长为2的正方体中,点分别在棱上,满足,
.
(1)试确定两点的位置.
(2)求二面角大小的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

四面体中,中点,中点,,则直
线所成的角大小为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知斜三棱柱,,,在底面上的射影恰为的中点,又知.

(Ⅰ)求证:平面;    
(Ⅱ)求到平面的距离;
(Ⅲ)求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是空间三条不同的直线,则下列命题正确的是(  )
A.,则B.,则
C.,则共面D.相交,相交,则共面

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设m、n是两条不同的直线,是两个不同的平面,给出下列四个命题.
①若,则
②若,则
③若,则
④若,则.
其中正确命题的序号是                           (把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图,在底面半径为3,母线长为5的圆锥中内接一个高为的圆柱.
(1)求圆锥的体积.
(2)当为何值时,圆柱的表面积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

高为的四棱锥-的底面是边长为1的正方形,点均在半径为1的同一球面上,则底面的中心与顶点之间的距离为__________________。

查看答案和解析>>

同步练习册答案