【题目】如图,正方形所在平面与等腰梯形所在平面互相垂直,已知,,.
(1)求证:平面平面;
(2)求平面与平面所成锐二面角的余弦值.
【答案】(1)见解析(2)
【解析】
(1)分别证明BD垂直DE和AD,结合直线与平面垂直判定,即可.(2)建立坐标系,分别计算两个平面的法向量,结合向量数量积公式,即可.
证明:(1)因为平面平面,平面平面,
,所以平面,
所以.
在中,,,
由余弦定理可得,所以,
所以,即,
又因为平面,平面,,
所以平面,
又因为平面,所以平面平面.
(2)因为四边形是等腰梯形,,
又由(1)知,所以,所以.
以为坐标原点,分别以,,所在直线作为轴,轴,轴建立如图所示的坐标系,
设,则,可得,,
由,,可得,,
由此可得,,,
设平面的法向量为,则,
可得,
令,则,,所以,
由(1)知,,,所以是平面的一个法向量.
.
所以所求锐二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】为了迎接旅游旺季的到来,辽阳汤河风景区内供游客住宿的某宾馆,工作人员发现为游客准备的食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入.为此他们统计每个月入住的游客人数,现每年各个月份来宾馆入住的游客人数会呈现周期性的变化,并且有以下规律:
①每年相同的月份,入住宾馆的游客人数基本相同;
②入住宾馆的游客人数在2月份最少,在8月份最多,相差约400人;
③2月份入住宾馆的游客约为100人,随后逐月增加直到8月份达到最多.
(1)若一年中入住宾馆的游客人数与月份之间的关系为,且.试求出函数的解析式;
(2)请问哪几个月份要准备不少于400份的食物?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,直线.
(1)求证:对直线与圆总有两个不同的交点;
(2)是否存在实数,使得圆上有四个点到直线的距离为?若存在,求出的范围,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体中,是棱的中点,是侧面内的动点,且与平面的垂线垂直,如图所示,下列说法不正确的序号为__________
①点的轨迹是一条线段.②与是异面直线.
③与不可能平行.④三棱锥的体积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《周脾算经》有记载:一年有二十四个节气,每个节气晷(gui)长损益相同,晷是按照日影测定时刻的仪器,晷长即所测定的影子的长度,二十四节气及晷长变化如图所示,相邻两个节气晷长变化量相同,周而复始,若冬至晷长最长是一丈三尺五寸,夏至晷长最短是一尺五寸,(一丈等于10尺,一尺等于10寸),则秋分节气的晷长是( )
A.七尺五寸B.二尺五寸C.五尺五寸D.四尺五寸
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为大力提倡“厉行节约,反对浪费”,某市通过随机调查100名性别不同的居民是否做到“光盘”行动,得到如下列联表:
| 做不到“光盘”行动 | 做到“光盘”行动 |
男 | 45 | 10 |
女 | 30 | 15 |
经计算. 附表:
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过的前提下,认为“该市居民能否做到光盘行动与性别有关”
C.有以上的把握认为“该市居民能否做到光盘行动与性别有关”
D.有以上的把握认为“该市居民能否做到光盘行动与性别无关”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com