已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件:
①∀x∈R,f(x)<0或g(x)<0;
②∃x∈(-∞,-4),f(x)g(x)<0,
则m的取值范围是________.
解析 当x<1时,g(x)<0,当x>1时,g(x)>0,当x=1时,g(x)=0,m=0不符合要求;当m>0时,根据函数f(x)和函数g(x)的单调性,一定存在区间[a,+∞)使f(x)≥0且g(x)≥0,故m>0时不符合第①条的要求;当m<0时,如图所示,如果符合①的要求,则函数f(x)的两个零点都得小于1,如果符合第②条要求,则函数f(x)至少有一个零点小于-4,问题等价于函数f(x)有两个不相等的零点,其中较大的零点小于1,较小的零点小于-4,函数f(x)的两个零点是2m,-(m+3),故m满足或解第一个不等式组得-4<m<-2,第二个不等式组无解,故所求m的取值范围是(-4,-2).
答案 (-4,-2)
科目:高中数学 来源:江苏省阜宁县中学2011-2012学年高二下学期期中调研考试数学试题 题型:022
已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+m)f(x).若曲线y=g(x)有斜率为0的切线,则实数m的取值范围为________.
查看答案和解析>>
科目:高中数学 来源:2012年普通高等学校招生全国统一考试北京卷数学理科 题型:022
已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件:
①x∈R,f(x)<0或g(x)<0;
②x∈(-∞,-4),f(x)g(x)<0,则m的取值范围是________.
查看答案和解析>>
科目:高中数学 来源:湖南省郴州市一中2012届高三第六次质量检测数学文科试题 题型:044
已知f(x)=mx(m为常数,m>0且m≠1).
设f(a1),f(a2),…,f(an)…(n∈N?)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bn=an·f(an),且数列{bn}的前n项和为Sn,当m=2时,求Sn;
(3)若cn=f(an)lgf(an),问是否存在m,使得数列{cn}中每一项恒小于它后面的项?若存在,求出m的范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年河北省高三8月月考理科数学试卷(解析版) 题型:解答题
已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.
(1)求f(x)的解析式;
(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依题意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)设切点为(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)
又切线过点A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
则g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.
∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2
画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,
所以m的取值范围是(-6,2).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com