精英家教网 > 高中数学 > 题目详情

【题目】已知点,过点作与轴平行的直线,点为动点在直线上的投影,且满足.

(1)求动点的轨迹的方程

(2)已知点为曲线上的一点,且曲线在点处的切线为,若与直线相交于点,试探究在轴上是否存在点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,说明理由.

【答案】(1);(2)见解析.

【解析】

试题分析:(1)设,由题得,则,由化简即可得动点的轨迹的方程;(2)设点,根据导数的几何意义,结合直线的点斜式方程可得直线的方程为,从而得点的坐标为,由恒成立得解得,进而可得结果.

试题解析:(1)设,由题得

,即

∴轨迹的方程为.

(2)设点

,得

∴直线的方程为

,可得

点的坐标为

,(*)

要使方程(*)对恒成立,则必有解得.

即在轴上存在点,使得以为直径的圆恒过点,其坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是首项的等差数列,设.

(1)求证:是等比数列;

(2)记,求数列的前项和

(3)在(2)的条件下,记,若对任意正整数,不等式恒成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·江苏高考)如图,在三棱锥ABCD中,ABADBCBD,平面ABD⊥平面BCD,点EF(EAD不重合)分别在棱ADBD上,且EFAD.

求证:(1)EF∥平面ABC

(2)ADAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】伴随着智能手机的深入普及,支付形式日渐多样化,打破了传统支付的局限性和壁垒,有研究表明手机支付的使用比例与人的年龄存在一定的关系,某调研机构随机抽取了50人,对他们一个月内使用手机支付的情况进行了统计,如下表:

(1)若以“年龄55岁为分界点”,由以上统计数据完成下面的列联表,并判断是否有的把握认为“使用手机支付”与人的年龄有关;

(2)若从年龄在内的被调查人中各随机选取2人进行追踪调查,记选中的4人中“使用手机支付”的人数为.

①求随机变量的分布列;

②求随机变量的数学期望.

参考数据如下:

0.05

0.010

0.001

3.841

6.635

10.828

参考格式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程是为参数),以该直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)写出曲线的普通方程和直线的直角坐标方程;

(2)设点,直线与曲线相交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为梯形,.的中点,底面在平面上的正投影为点,延长于点.

(1)求证:中点;

(2)若,在棱上确定一点,使得平面,并求出与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若是曲线的切线,的值;

2)若,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(为常数),曲线在与轴的交点A处的切线与轴平行.

(1)的值及函数的单调区间;

(2)若存在不相等的实数使成立试比较的大小.

查看答案和解析>>

同步练习册答案