精英家教网 > 高中数学 > 题目详情
8.下列函数中,与函数y=x相等的函数是(  )
A.y=$\sqrt{{x}^{2}}$B.y=$\root{3}{|x{|}^{3}}$
C.y=lnexD.y=a${\;}^{lo{g}_{a}x}$(a>0且a≠1)

分析 已知函数的定义域是R,分别判断四个函数的定义域和对应关系是否和已知函数一致即可.

解答 解:A.y=$\sqrt{{x}^{2}}$=|x|对应法则不同;
B.y=$\root{3}{|x{|}^{3}}$=|x|,对应法则不同.
C.y=lnex=x,定义域和对应法则相同.
D.y=a${\;}^{lo{g}_{a}x}$=x.函数的定义域为(0,+∞),定义域不同;
故选:C

点评 本题主要考查函数相等的判断,根据函数定义域和对应法则是否相同是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x),x≤0}\\{{a}^{x},x>0}\end{array}\right.$.若f(1)=f(-1),则实数a的值等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若4x-5×2x+6≤0,则函数f(x)=2x-2-x的值域是[$\frac{3}{2}$,$\frac{8}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,函数f(x)的定义域为[-1,2],f(x)的图象为折线AB,BC.
(Ⅰ)求f(x)的解析式;
(Ⅱ)解不等式f(x)≥x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若圆x2+y2-4mx+(2m-3)y+4=0被直线2x-2y-3=0所截得的弦最长,则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知4a=9b=12,则a,b满足下列关系式(  )
A.$\frac{1}{a}$+$\frac{1}{b}$=1B.$\frac{1}{a}$+$\frac{1}{2b}$=1C.$\frac{2}{a}$+$\frac{1}{b}$=1D.$\frac{1}{2a}$+$\frac{1}{b}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在如图所示的韦恩图中,A,B是非空集合,定义A*B表示阴影部分集合,若集合A={x|y=$\sqrt{3x-{x}^{2}}$,x,y∈R},B={y|y=4x,x>0},则A*B=[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在数列{an}中,已知a1=$\frac{1}{2}$,an+1=1-$\frac{1}{{a}_{n}}$,n∈N*,则a30=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.直线x-y+2=0和椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的交点.

查看答案和解析>>

同步练习册答案