精英家教网 > 高中数学 > 题目详情

【题目】某客户考察了一款热销的净水器,使用寿命为十年,过滤由核心部件滤芯来实现.在使用过程中,滤芯需要不定期更换,其中滤芯每个200.如图是根据100台该款净水器在十年使用期内更换的滤芯的件数制成的柱状图.(以100台净水器更换滤芯的频率代替1台净水器更换滤芯发生的概率)

1)估计一台净水器在使用期内更换滤芯的件数的众数和中位数.

2)估计一台净水器在使用期内更换滤芯的件数大于10的概率.

3)已知上述100台净水器在购机的同时购买滤芯享受5折优惠(使用过程中如需再购买无优惠),假设每台净水器在购机的同时购买滤芯10个,这100台净水器在使用期内,更换滤芯的件数记为a,所需费用记为y,补全下表,估计这100台净水器在使用期内购买滤芯所需总费用的平均数.

100台该款净水器在试用期内更换滤芯的件数a

9

10

11

12

频数

费用y

【答案】(1)众数为11,中位数为11;(20.7;(3)见解析,1200.

【解析】

1)由条形图估计一台净水器在使用期内更换滤芯的件数的众数和中位数;

(2)先求出一台净水器在使用期内更换滤芯的件数大于10的频数为70(台),再利用古典概型的概率公式得解;

(3)先通过计算得到对应的费用y,再利用平均数的公式求解.

1)估计一台净水器在使用期内更换滤芯的件数的众数为11.

估计一台净水器在使用期内更换滤芯的件数的中位数为11.

2)因为在100台净水器中,一台净水器在使用期内更换滤芯的件数大于10的频数为(台),

所以,一台净水器在使用期内更换滤芯的件数大于10的频率为.

故估计一台净水器在使用期内更换滤芯的件数大于10的概率为0.7.

3时,(元)

时,(元)

时,(元)

时,(元)

补全表格得:

100台该款净水器在使用期内更换滤芯的件数a

9

10

11

12

频率

0.1

0.2

0.4

0.3

费用y

1000

1000

1200

1400

假设每台净水器购买一级滤芯10个,则这100台净水器在使用期内购买滤芯所需总费用的平均数为(元)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】谢宾斯基三角形是一种分形,由波兰数学家谢宾斯基在1915年提出,先作一个正三角形.挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色代表挖去的面积,那么黑三角形为剩下的面积(我们称黑三角形为谢宾斯基三角形).向图中第5个大正三角形中随机撒512粒大小均匀的细小颗粒物,则落在白色区域的细小颗粒物的数量约是(

A.256B.350C.162D.96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,把和叫做数列的前项泛和,记作为.已知数列的前项和为,且.

1)求数列的通项公式;

2)数列与数列的前项的泛和为,且恒成立,求实数的取值范围;

3)从数列的前项中,任取项从小到大依次排列,得到数列;再将余下的项从大到小依次排列,得到数列.求数列与数列的前项的泛和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形与四边形都是直角梯形,,四边形为菱形,

1)求证:平面平面

2)若二面角的余弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,是以为斜边的等腰直角三角形,是等边三角形,,如图②,将沿折起使平面平面分别为的中点,点在棱上,且,点在棱上,且.

1)在棱上是否存在一点,使平面平面?若存在,求的值;若不存在,请说明理由.

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据《人民网》报道,美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在去年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)

单位:公顷

地区

造林总面积

造林方式

人工造林

飞播造林

新封山育林

退化林修复

人工更新

内蒙

618484

311052

74094

136006

90382

6950

河北

583361

345625

33333

13507

65653

3643

河南

149002

97647

13429

22417

15376

133

重庆

226333

100600

62400

63333

陕西

297642

184108

33602

63865

16067

甘肃

325580

260144

57438

7998

新疆

263903

118105

6264

126647

10796

2091

青海

178414

16051

159734

2629

宁夏

91531

58960

22938

8298

1335

北京

19064

10012

4000

3999

1053

1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;

2)在这十个地区中,任选一个地区,求该地区新封山育林面积占造林总面积的比值超过的概率;

3)在这十个地区中,从退化林修复面积超过一万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,ED1D的中点,ACBD的交点为O

1)求证:EO⊥平面AB1C

2)在由正方体的顶点确定的平面中,是否存在与平面AB1C平行的平面?证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数,当时,,给出下列命题:

①当时,

②函数2个零点;

的解集为

,都有.

其中真命题的个数为(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向左平移个单位,然后纵坐标不变,横坐标变为原来的倍,得到的图象,下面四个结论正确的是( )

A. 函数在区间上为增函数

B. 将函数的图象向右平移个单位后得到的图象关于原点对称

C. 是函数图象的一个对称中心

D. 函数上的最大值为

查看答案和解析>>

同步练习册答案