精英家教网 > 高中数学 > 题目详情
4.(1)已知(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展开式中各项系数的和为2,求该展开式中的常数项.

分析 根据(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展开式中各项系数的和为2求得a=1,再根据它的展开式的通项公式求得它的常数项.

解答 解:∵(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展开式中各项系数的和为(a+1)(2-1)=2,
∴a=1,
(2x-$\frac{1}{x}$)5的通项为Tr+1=${C}_{5}^{r}•(-1)^{r}•{2}^{5-r}•{x}^{5-2r}$,
故常数项为${C}_{5}^{4}•2$=10

点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.把一枚均匀的硬币连续掷3次
(1)写出它的所有基本事件;
(2)求至少有两次正面朝上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某人射击一次,命中7-10环的概率如下表所示:
命中环数10987
概   率0.120.180.280.32
此人射击一次,命中不足8环的概率为0.42.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数ft(x)=-(x-t)2+t(t∈R),设a>b,f(x)=$\left\{\begin{array}{l}{{f}_{a}(x),{f}_{a}(x)≥{f}_{b}(x)}\\{{f}_{b}(x),{f}_{a}(x)<{f}_{b}(x)}\end{array}\right.$,若函数y=f(x)-x+a-b有四个零点,则b-a的取值范围是(  )
A.(-∞,-2-$\sqrt{5}$)B.(-∞,2-$\sqrt{5}$)C.(-2-$\sqrt{5}$,0)D.(2-$\sqrt{5}$.0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.记等差数列{an}的前n项和为Sn,已知a1=2,且数列{$\sqrt{{S}_{n}}$}也为等差数列,则数列{an}的公差d=4,通项公式an=4n-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设集合p={x|y=$\sqrt{x}$+1},Q={y|y=x3},则P=[0,+∞),P∩Q=[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=ln(2x2-3)的单调减区间为(-$∞,-\frac{\sqrt{6}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-ax+lnx,a∈R.
(1)若f(x)是单调递增函数,求a的最大值;
(2)若f(x)>0在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知x2+y2-4x-2y+5=0,则logx(yx)的值为(  )
A.xB.yC.1D.0

查看答案和解析>>

同步练习册答案