精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左,右焦点分别是,,离心率为,直线被椭圆C截得的线段长为.

(1)求椭圆C的方程;

(2)过点且斜率为k的直线l交椭圆CA,B两点,交x轴于P点,点A关于x轴的对称点为M,直线BMx轴于Q点.求证:(O为坐标原点)为常数.

【答案】(1);(2)证明见解析.

【解析】

1)由题意可得点在椭圆上,代入椭圆方程可得,再利用椭圆的离心率,求出即可求解.

2)设直线l的方程为,点P的坐标为,设,,则,根据题意求出点坐标,联立,利用韦达定理将点坐标用表示即可证出.

设椭圆C的焦距为,则,

由直线被椭圆C截得的线段长为可知,点在椭圆上,

从而.结合,可解得,.

故椭圆C的方程为.

(2)依题意,直线l的方程为,则P的坐标为.

,,则,

直线BM的方程为,令,

Q点的横坐标为.①

又由,得,

,

,

代入①得,

,所以为常数4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】新中国昂首阔步地走进2019年,迎来了她70岁华诞.某平台组织了伟大的复兴之路一新中国70周年知识问答活动,规则如下:共有30道单选题,每题4个选项中只有一个正确,每答对一题获得5颗红星,每答错一题反扣2颗红星;若放弃此题,则红星数无变化.答题所获得的红星可用来兑换神秘礼品,红星数越多奖品等级越高.小强参加该活动,其中有些题目会做,有些题目可以排除若干错误选项,其余的题目则完全不会.

1)请问:对于完全不会的题目,小强应该随机从4个选项中选一个作答,还是选择放弃?(利用统计知识说明理由)

2)若小强有12道题目会做,剩下的题目中,可以排除一个错误选项、可以排除两个错误选项和完全不会的题目的数量比是.请问:小强在本次活动中可以获得最多红星数的期望是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,且的最小值为的图象的相邻两条对称轴之间的距离为的图象关于原点对称.

(1)求函数的解析式和单调递增区间;

(2)在中,角所对的边分别为,且,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现计划用两张铁丝网在一片空地上围成一个梯形养鸡场,已知两段是由长为的铁丝网折成,两段是由长为的铁丝网折成.设上底的长为,所围成的梯形面积为.

1)求S关于x的函数解析式,并求x的取值范围;

2)当x为何值时,养鸡场的面积最大?最大面积为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“剑桥学派”创始人之一数学家哈代说过:“数学家的造型,同画家和诗人一样,也应当是美丽的”;古希腊数学家毕达哥拉斯创造的“黄金分割”给我们的生活处处带来美;我国古代数学家赵爽创造了优美“弦图”.“弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,则等于(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线经过点,过点作直线两点,分别交直线两点.

1)求的方程和焦点坐标;

2)设,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数的图象与x轴相切,求实数a的值;

2)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计显示,男士喜欢阅读古典文学的有64人,不喜欢的有56人;女士喜欢阅读古典文学的有36人,不喜欢的有44人.

(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?

(2)为引导市民积极参与阅读,有关部门牵头举办市读书交流会,从这200人中筛选出5名男代表和4名代表,其中有3名男代表和2名女代表喜欢古典文学.现从这9名代表中任选3名男代表和2名女代表参加交流会,记为参加交流会的5人中喜欢古典文学的人数,求的分布列及数学期望

附:,其中

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体,点分别是棱的中点,动点在线段上运动.

1)证明:平面

2)求直线与平面所成角的正弦值的最大值.

查看答案和解析>>

同步练习册答案