精英家教网 > 高中数学 > 题目详情
设各项为正的无穷数列{xn}满足lnxn+
1
xn+1
<1(n∈N+),证明,xn≤1(n∈N+).
考点:数列的极限
专题:导数的综合应用
分析:令f(x)=lnx+
1
x
,(x>0).利用导数研究函数的单调性可得f(x)≥1.下面用反证法证明:x1≤1,假设x1>1,由于ln
xn
b
+
b
xn
≥1
,可得
b
xn
>lnb+
1
xn+1
,可得1=
b
x1
>lnb+
1
x2
(1+
1
b
+
1
b2
+…)lnb
=
1
1-
1
b
lnb
,得出矛盾即可.
解答: 证明:令f(x)=lnx+
1
x
,(x>0).
则f′(x)=
1
x
-
1
x2
=
x-1
x2

令f′(x)>0,解得x>1,此时函数f(x)单调递增;令f′(x)<0,解得0<x<1,此时函数f(x)单调递减.
因此x=1时,函数f(x)取得极小值即最小值,f(1)=1,∴f(x)≥1.
下面用反证法证明:x1≤1,假设x1>1,
ln
xn
b
+
b
xn
≥1
,∴
b
xn
>lnb+
1
xn+1

∴1=
b
x1
>lnb+
1
x2
>lnb+
1
b
(lnb+
1
x3
)
(1+
1
b
+
1
b2
+…)lnb
=
1
1-
1
b
lnb

化为lnb+
1
b
<1,与f(b)≥1矛盾,因此假设不成立,故x1≤1.
同理可证:xn≤1(n=2,3,…).
∴xn≤1(n∈N+).
点评:本题考查了导数研究函数的单调性、反证法,考查了构造函数法,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A(1,0,0),B(0,-1,1),
OA
OB
OB
(O为坐标原点)的夹角为120°,则实数λ的值为(  )
A、±
6
6
B、
6
6
C、-
6
6
D、±
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边经过点P(-3,4).
(1)求sinα,cosα的值;
(2)求sin(π+α)+cos(-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知一艘船以30nmile/h的速度往北偏东10°的A岛行驶,计划到达A岛后停留10min后继续驶往B岛,B岛在A岛的北偏西60°的方向上.船到达C处时是上午10时整,此时测得B岛在北偏西30°的方向,经过20min到达D处,测得B岛在北偏西45°的方向,如果一切正常的话,此船何时能到达B岛?

查看答案和解析>>

科目:高中数学 来源: 题型:

两个变量的数据如表,
x1357
y45m8
已知回归方程为y=
7
5
x+
2
5
,则表中缺失的数据m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式(log 
1
2
x)2-6log4x+2≤0的解集为M,当x∈M时,求f(x)=a•2x+3+4x的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,-2a<b<-a,a+b+c=0,求
b2-3ac
a2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
sin(
π
2
-α)sin(-α)tan(π-α)
tam(-α)sin(π-α)

(1)化简f(α);
(2)若α为第三象限角,且cos(
2
-α)=
1
5
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

试求关于x的方程x2-ax+1=0,x2+(a-1)x+16=0,x2-2ax+3a+1=0中至少一个方程有实根的充要条件.

查看答案和解析>>

同步练习册答案