精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面是边长为2的正方形,侧面底面上的点,且平面

(1)求证:平面平面

(2)当三棱锥体积最大时,求二面角的余弦值.

【答案】(1)见证明;(2.

【解析】

1)通过侧面底面,可以证明出,这样可以证明出

,再利用平面,可以证明出,这样利用线面垂直的判定定理可以证明出,最后利用面面垂直的判定定理可以证明出平面平面

(2)利用三棱锥体积公式可得

利用基本不等式可以求出三棱锥体积最大值,此时可以求出的长度,以点为坐标原点,以分别作为轴,轴和轴,建立空间直角坐标系.求出相应点的坐标,求出面的一个法向量,面的一个法向量,利用空间向量数量积的运算公式,可以求出二面角的余弦值.

(1)证明:∵侧面底面,侧面底面,四边形为正方形,∴

平面

平面

∴平面平面

(2)

求三棱锥体积的最大值,只需求的最大值.

,由(1)知,

当且仅当,即时,

的最大值为

如图所示,分别取线段中点,连接

以点为坐标原点,以分别作为轴,轴和轴,建立空间直角坐标系

由已知

所以

为面的一个法向量,

则有

易知为面的一个法向量,

二面角的平面角为为锐角

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是(

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)若二项式的展开式中存在常数项,则的最小值为______

2)从6名志愿者中选出4人,分别参加两项公益活动,每项活动至少1人,则不同安排方案的种数为____.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在棱长为4的正方体中,点M是正方体表面上一动点,则下列说法正确的个数为(

①若点M在平面ABCD内运动时总满足,则点M在平面ABCD内的轨迹是圆的一部分;

②在平面ABCD内作边长为1的小正方形EFGA,点M满足在平面ABCD内运动,且到平面的距离等于到点F的距离,则M在平面ABCD内的轨迹是抛物线的一部分;

③已知点N是棱CD的中点,若点M在平面ABCD内运动,且平面,则点M在平面内的轨迹是线段;

④已知点PQ分别是的中点,点M为正方体表面上一点,若MPCQ垂直,则点M所构成的轨迹的周长为.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的右焦点与抛物线的焦点重合,曲线相交于点

1)求椭圆的方程;

2)过右焦点的直线(与轴不重合)与椭圆交于两点,线段的中点,连接并延长交椭圆点(为坐标原点),求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,平面ABCD,四边形ABCD为菱形,,点MN分别在棱FDED.

1)若平面MAC,设,求的值;

2)若,平面AEN平面EDC所成的锐二面角为,求BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角三角形所在的平面与半圆弧所在平面相交于,,分别为,的中点, 上异于,的点, .

1)证明:平面平面;

2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线.

1)若抛物线的焦点到准线的距离为4,点在抛物线上,线段的中点为,求直线的方程;

2)若圆以原点为圆心,1为半径,直线分别相切,切点分别为,求的最小值.

查看答案和解析>>

同步练习册答案