精英家教网 > 高中数学 > 题目详情
已知f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=x3+x2+x.
(1)求f(x)的解析式;
(2)判断f(x)的单调性,并用定义证明.
分析:(1)将-x代入已知等式,利用函数f(x)、g(x)的奇偶性,得f(x)与g(x)的又一等式,将二者看做未知数解方程组即可得f(x)的解析式;(2)利用函数单调性的定义,设x1,x2∈R,且x1<x2,利用作差法比较f(x1)与f(x2)的大小,即可证明函数的单调性
解答:解:(1)∵f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=x3+x2+x.①
∴f(-x)-g(-x)=-x3+x2-x,即-f(x)-g(x)=-x3+x2-x  ②
①-②得2f(x)=2x3+2x,∴f(x)=x3+x
(2)函数f(x)为R上的单调增函数
证明:设x1,x2∈R,且x1<x2
则f(x1)-f(x2)=x13+x1-(x23+x2)=x13-x23+(x1-x2
=(x1-x2)(x12+x1x2+x22)+(x1-x2)=(x1-x2)(x12+x1x2+x22+1)
∵x1,x2∈R,且x1<x2
∴x1-x2<0,x12+x1x2+x22+1=(x1+
x2
2
)2+
3x22
4
+1>0
∴(x1-x2)(x12+x1x2+x22+1)<0
即f(x1)-f(x2)<0,f(x1)<f(x2
∴函数f(x)在R上为增函数.
点评:本题考查了函数奇偶性,解方程组法求函数的解析式,利用单调性定义证明函数单调性的方法,作差法比较大小的方法和技巧
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知f(x)是奇函数,且x<0时,f(x)=cosx+sin2x,则当x>0时,f(x)的表达式是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是奇函数,当x>0时f(x)=-x(1+x),当x<0时f(x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是奇函数,且f(2-x)=f(x),当x∈[2,3]时,f(x)=log2(x-1),则当x∈[1,2]时,f(x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•茂名一模)已知f(x)是奇函数,当x>0时,f(x)=log2x,则f(-
1
2
)
=(  )

查看答案和解析>>

同步练习册答案