精英家教网 > 高中数学 > 题目详情
在△ABC中,A、B、C为三个内角,f(B)=4sinB•cos2
π
4
-
B
2
)+cos2B.
(Ⅰ)若f(B)=2,求角B;
(Ⅱ)若f(B)-m<2恒成立,求实数m的取值范围.
考点:三角函数的最值
专题:三角函数的求值
分析:(Ⅰ)化简可得f(B)=2sinB+1,结合已知可得sinB的值,可得B的值;
(Ⅱ)由f (B)-m<2恒成立集合三角函数的最值可得1+m>2,解不等式可得.
解答: 解:(Ⅰ)化简可得f(B)=4sinB•cos2
π
4
-
B
2
)+cos2B
=4sinB•
1+cos(
π
2
-B)
2
+1-2sin2B
=2sinB(1+sinB)+1-2sin2B
=2sinB+1=2,∴sinB=
1
2

又∵0<B<π,∴B=
π
6
6

(Ⅱ)∵f (B)-m<2恒成立,
∴2sinB+1-m<2恒成立,
∴2sinB<1+m
∵0<B<π,
∴2sinB的最大值为2,
∴1+m>2,∴m>1.
点评:本题考查三角函数化简求值,涉及二倍角公式和恒成立问题,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知原点O到直线AB的距离为
6
3
b
(Ⅰ)求椭圆的离心率;
(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程a2x+1=x2+x有一实数解x0,且x∈(
1
4
1
2
),求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,且4a-b≥0,若函数f(x)=
1
3
ax3+x2+bx无极值,则
b-2
a+1
的取值范围为(  )
A、[2
3
-4,4]
B、[2
3
-4,+∞]
C、[-2
3
-4,4]
D、[-2
3
-4,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一企业生产某产品的年固定成本为10万元,每生产千件该产品需另投入2.7万元,设该企业年内共生产此种产品x千件,并且全部销售完,每千件的销售收入为f(x)万元,且f(x)=
10.8-
1
30
x2(0<x≤10)
108
x
-
1000
3x2
(x>10)

(Ⅰ)写出年利润P(万元)关于产品年产量x(千件)的函数关系式;
(Ⅱ)年产量x为多少千件时,该企业生产此产品所获年利润最大?(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

现有编号为1、2、3号的3个信箱和编号为A、B、C、D的4封信.
(1)若从4封信中任选3封分别投入3个信箱,其中A恰好投入1号信箱的概率是多少?
(2)若4封信可以任意投入信箱,投完为止,其中A恰好投入1号或2号信箱的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+2px+(2-q2)=0(p,q∈R)有两个相等的实根,则p+q的取值范围是(  )
A、[-2,2]
B、(-2,2)
C、[-
2
2
]
D、(-
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知顶点在原点,焦点在x轴的负半轴的抛物线截直线y=x+
3
2
所得的弦长|P1P2|=4
2
,求此抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

学校从高一各班随机抽取了部分同学参加了一次安全知识竞赛,其中某班参赛同学的成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分,如图所示,据此解答下列问题:

(1)求该班的参赛人数及分数在[80,90)之间的人数;
(2)若要从分数在[80,100]之间的试卷中任取两份分析学生的失分情况,在抽取的试卷中,设分数在[90,100]之间的份数为随机变量ξ,求ξ的分布列及数学期望Eξ.

查看答案和解析>>

同步练习册答案