【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线,的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(1)将放在容器Ⅰ中,的一端置于点A处,另一端置于侧棱上,求没入水中部分的长度;
(2)将放在容器Ⅱ中,的一端置于点E处,另一端置于侧棱上,求没入水中部分的长度.
【答案】(1)16;(2)20.
【解析】【思路分析】(1)转化为直角三角形ACM中,利用相似性质求解AP1;(2)转化到三角形EGN中,先利用直角梯形性质求角,再利用正弦定理求角,最后根据直角三角形求高,即为没入水中部分的长度.
(1)由正棱柱的定义,平面,所以平面平面,.
记玻璃棒的另一端落在上点处.
因为,所以,从而,
如图,与水面的交点为,过作P1Q1⊥AC,Q1为垂足,
则P1Q1⊥平面ABCD,故P1Q1=12,从而AP1=.
答:玻璃棒l没入水中部分的长度为16cm.(5分)
(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)
(2)如图,O,O1是正棱台的两底面中心.
由正棱台的定义,OO1⊥平面EFGH,所以平面E1EGG1⊥平面EFGH,O1O⊥EG.
同理,平面E1EGG1⊥平面E1F1G1H1,O1O⊥E1G1.
记玻璃棒的另一端落在GG1上点N处.
过G作GK⊥E1G1,K为垂足,则GK =OO1=32.
因为EG = 14,E1G1= 62,
所以KG1=,从而.
设则.
因为,所以.
在中,由正弦定理可得,解得.
因为,所以.
于是.
记EN与水面的交点为P2,过P2作P2Q2⊥EG,Q2为垂足,则P2Q2⊥平面EFGH,
故P2Q2=12,从而EP2=.
答:玻璃棒l没入水中部分的长度为20cm.(10分)
(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)
科目:高中数学 来源: 题型:
【题目】现有4个人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1) 求出4个人中恰有2个人去 参加甲游戏的概率;
(2)求这4个人中去参加甲游戏人数大于去参加乙游戏的人数的概率;
(3)用分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,直线倾斜角是且过抛物线的焦点,直线被抛物线截得的线段长是16,双曲线: 的一个焦点在抛物线的准线上,则直线与轴的交点到双曲线的一条渐近线的距离是( )
A. 2 B. C. D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由20名高二级学生和15名高一级学生组成,现采用分层抽样的方法抽取7人,组成一个体验小组去市场体验“共享单车”的使用.问:
(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;
(Ⅱ)已知该地区有, 两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租型车,高一级学生都租型车.
(1)如果从组内随机抽取3人,求抽取的3人中至少有2人在市场体验过程中租型车的概率;
(2)已知该地区型车每小时的租金为1元, 型车每小时的租金为1.2元,设为从体验小组内随机抽取3人得到的每小时租金之和,求的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2﹣6x+8<0},B={x|(x﹣a)(x﹣3a)<0}.
(1)若a=1,求A∩B;
(2)若A∩B=,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注: )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com