精英家教网 > 高中数学 > 题目详情

【题目】以直角坐标系的原点为极点,以轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线的参数方程为为参数,),曲线的极坐标方程为

(1)若,求直线的普通方程和曲线的直角坐标方程;

(2)设直线与曲线相交于两点,当变化时,求的最小值.

【答案】(1).(2).

【解析】分析:(1)代入到直线的参数方程消去即可得直线的普通方程再根据即可求得曲线的直角坐标方程;(2)将直线的参数方程代入到曲线的直角坐标方程,根据韦达定理可得结合参数的几何意义及三角函数的图象与性质即可求得的最小值.

详解:(1)当时,由直线的参数方程消去,即直线的普通方程为

因为曲线过极点,由,得

所以曲线的直角坐标方程为

(2)将直线的参数方程代入,得.

由题意知,设两点对应的参数分别为,则.

.

,即时,的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)求的定义域

(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数的图象在处的切线方程;

(2)若函数在定义域上为单调增函数。

①求的最大整数值;

②证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业对现有设备进行了改造,为了了解设备改造后的效果,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测其质量指标值,若质量指标值在内,则该产品视为合格品,否则视为不合格品.图1是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.

(1)完成列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关:

设备改造前

设备改造后

合计

合格品

不合格品

合计

(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;

(3)企业将不合格品全部销毁后,根据客户需求对合格品进行等级细分,质量指标值落在内的定为一等品,每件售价180元;质量指标值落在内的定为二等品,每件售价150元;其他的合格品定为三等品,每件售价120元.根据频数分布表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有合格产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为(单位:元),求的分布列和数学期望.

附:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)求函数的单调区间;

(2)若函数存在两个极值点,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一块长方形区域,在边的中点处有一个可转动的探照灯,其照射角始终为,设,探照灯照射在长方形内部区域的面积为.

1)求关于的函数关系式;

2)当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数,定义域为的函数是偶函数,其中为自然对数的底数.

(Ⅰ)求实数值;

(Ⅱ)判断该函数上的单调性并用定义证明;

(Ⅲ)是否存在实数,使得对任意的,不等式恒成立.若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游景点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3.规定:每辆自行车的日租金不超过20元,每辆自行车的日租金元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用表示出租所有自行车的日净收入(即一日中出租所以自行车的总收入减去管理费用后的所得).

1)求函数的解析式及定义域;

2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意,给出下列命题:

①“”是“”的充要条件;

②“是无理数”是“是无理数”的充要条件;

③“”是“”的必要条件,

④“”是“”的充分条件.

其中真命题的个数为().

A.1

B.2

C.3

D.4

查看答案和解析>>

同步练习册答案