精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求函数在点处的切线方程;

2)设函数上有且只有一个零点,求的取值范围.(其中为自然对数的底数)

【答案】1;(2

【解析】

1)利用曲线在某一点处切线方程的求法可直接求得结果;

2)由可将问题转化为上无零点;当时,单调递增,满足题意;当时,求得导函数的零点,分别在两种情况下,讨论函数的单调性,并根据最值确定是否有零点,从而求得的取值范围.

1切点坐标为

切线方程为:.

2上的唯一零点,

上无零点.

①当时,上恒成立,上单调递增,

,满足题意;

②当时,令,解得:

⑴当,即时,

,则;若,则

上单调递减,在上单调递增,

,即时,上无零点,满足题意;

,即时,上有零点,不合题意;

⑵当,即时,上恒成立,上单调递增,

,满足题意;

综上所述:实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近五年来某草场羊只数量与草场植被指数两变量间的关系如表所示,绘制相应的散点图,如图所示:

年份

1

2

3

4

5

羊只数量(万只)

1.4

0.9

0.75

0.6

0.3

草地植被指数

1.1

4.3

15.6

31.3

49.7

根据表及图得到以下判断:①羊只数量与草场植被指数成减函数关系;②若利用这五组数据得到的两变量间的相关系数为,去掉第一年数据后得到的相关系数为,则;③可以利用回归直线方程,准确地得到当羊只数量为2万只时的草场植被指数;以上判断中正确的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,上顶点为A,过的直线y轴交于点M,满足O为坐标原点),且直线l与直线之间的距离为.

1)求椭圆C的方程;

2)在直线上是否存在点P,满足?存在,指出有几个这样的点(不必求出点的坐标);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.

1)经过1轮投球,记甲的得分为,求的分布列;

2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.

①求

②规定,经过计算机计算可估计得,请根据①中的值分别写出ac关于b的表达式,并由此求出数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.(是自然对数的底数)

1)求的单调递减区间;

2)记,若,试讨论上的零点个数.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线C,过抛物线焦点F的直线交抛物线CAB两点,P是抛物线外一点,连接分别交抛物线于点CD,且,设的中点分别为MN.

1)求证:轴;

2)若,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有极值,且导函数的极值点是的零点.

1)求关于的函数关系式,并写出定义域;

2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在中,角的对边分别为,且.

(1)求的值;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,ABCDADDCBC1,∠ABC60°,四边形ACFE为矩形,平面ACFE⊥平面ABCDCF1

1)证明:BC⊥平面ACFE

2)设点M在线段EF上运动,平面MAB与平面FCB所成锐二面角为θ,求cosθ的取值范围.

查看答案和解析>>

同步练习册答案