精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若关于的不等式的解集为,求函数的最小值;

2)是否存在实数,使得对任意,存在,不等式成立?若存在,求出的取值范围;若不存在,说明理由.

【答案】1

2)不存在实数,使得对任意,存在,不等式成立,理由见解析.

【解析】

(1)利用二次不等式解集的性质与韦达定理求解得,再代入了与基本不等式求最值即可.

(2)由题可知若存在则,根据对数不等式性质可知,再分析二次函数的对称轴与区间的位置关系求得的最值分析即可.

1)依题意得,23是方程的两根

由韦达定理可知:

又∵,∴

当且仅当时等号成立,

所以的最小值为.

2)假设存在实数,使得对任意,存在,不等式成立

时,,∴

成立

,其对称轴为,

①当,即时,

,∴

②当,即时,

,∴

综上所述,不存在实数,使得对任意,存在,不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,圆柱体木材的横截面半径,从该木材中截取一段圆柱体,再加工制作成直四棱柱,该四棱柱的上、下底面均为等腰梯形,分别内接于圆柱的上、下底面,下底面圆的圆心在梯形内部,,设.

1)求梯形的面积;

2)当取何值时,直四棱柱的体积最大?并求出最大值(注:木材的长度足够长)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,平面平面为等边三角形,的中点.

1)求证:

2)若为线段上一点,且,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中

(Ⅰ)试讨论的单调性;

(Ⅱ)若函数存在极值,对于任意的,存在正实数,使得 ,试判断的大小关系并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱ABEDCF和一个四棱锥PABCD组合而成,其中EFEAEB2AEEBPAPD,平面PAD∥平面EBCF

1)证明:平面PBC∥平面AEFD

2)求直线AP与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市美团外卖配送员底薪是每月1800元,设每月配送单数为X,若,每单提成3元,若,每单提成4元,若,每单提成4.5元,饿了么外卖配送员底薪是每月2100元,设每月配送单数为Y,若,每单提成3元,若,每单提成4元,小想在美团外卖和饿了么外卖之间选择一份配送员工作,他随机调查了美团外卖配送员甲和饿了么外卖配送员乙在2019年4月份(30天)的送餐量数据,如下表:

表1:美团外卖配送员甲送餐量统计

日送餐量x(单)

13

14

16

17

18

20

天数

2

6

12

6

2

2

表2:饿了么外卖配送员乙送餐量统计

日送餐量x(单)

11

13

14

15

16

18

天数

4

5

12

3

5

1

(1)设美团外卖配送员月工资为,饿了么外卖配送员月工资为,当时,比较的大小关系

(2)将4月份的日送餐量的频率视为日送餐量的概率

(ⅰ)计算外卖配送员甲和乙每日送餐量的数学期望E(X)和E(Y

(ⅱ)请利用所学的统计学知识为小王作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家的学习兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下列数学问题的答案:已知数列1121248124816……,其中第一项是,接下来的两项是,再接下来的三项是……,以此类推,求满足如下条件的最小整数且该数列的前项和为2的整数幂,那么该软件的激活码是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为弘扬民族古典文化,学校举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确给改选手记正10分,否则记负10分根据以往统计,某参赛选手能答对每一个问题的概率为;现记该选手在回答完个问题后的总得分为

1的概率;

2,求的分布列,并计算数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为调查高三学生英语听力水平的情况,随机抽取了高三年级的80名学生进行测试,根据测试结果绘制了英语听力成绩(满分为30分)的频率分布直方图,将成绩不低于27分的定为优秀

1)根据已知条件完成下面的列联表,并据此资料判断是否有90%的把握认为英语听力成绩是否优秀与性别有关?

英语听力优秀

非英语听力优秀

合计

男同学

10

女同学

36

合计

2)将上述调查所得到的频率视为概率,现在从该校高三学生中,采取随机抽样方法每次抽取1名学生,共抽取3次,记被抽取的3名学生中英语听力优秀的人数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望EX

参考公式:,其中

参考临界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案
鍏� 闂�