精英家教网 > 高中数学 > 题目详情
5.已知点P是锐角△ABC所在平面内的动点,且满足$\overrightarrow{CP}•\overrightarrow{CB}=\overrightarrow{CA}•\overrightarrow{CB}$,给出下列四个命题:
①点P的轨迹是一条直线;
②$|\overrightarrow{CP}|=|\overrightarrow{CA}|$恒成立;
③$|\overrightarrow{CP}|≥|\overrightarrow{CA}|cosC$;
④存在点P使得$|\overrightarrow{PC}+\overrightarrow{PB}|=|\overrightarrow{CB}|$.
则其中真命题的序号为(  )
A.①②B.③④C.①②④D.①③④

分析 ①由$\overrightarrow{CP}•\overrightarrow{CB}=\overrightarrow{CA}•\overrightarrow{CB}$,得$\overrightarrow{CB}$⊥$\overrightarrow{AP}$,点P的轨迹是CB边的高线所在的直线;
②由$\overrightarrow{CP}$•$\overrightarrow{CB}$=$\overrightarrow{CA}$•$\overrightarrow{CB}$,得|$\overrightarrow{CP}$|cos<$\overrightarrow{CP}$,$\overrightarrow{CB}$>=|$\overrightarrow{CA}$|cos<$\overrightarrow{CA}$,$\overrightarrow{CB}$>,$|\overrightarrow{CP}|=|\overrightarrow{CA}|$不一定成立;
由cos<$\overrightarrow{CP}$,$\overrightarrow{CB}$>≤1,|$\overrightarrow{CP}$|cos<$\overrightarrow{CP}$,$\overrightarrow{CB}$>=|$\overrightarrow{CA}$|cos<$\overrightarrow{CA}$,$\overrightarrow{CB}$>,得$|\overrightarrow{CP}|≥|\overrightarrow{CA}|cosC$;
④$\overrightarrow{PC}$⊥$\overrightarrow{PB}$时,以PC、PB为邻边所作的平行四边形是矩形,得|$\overrightarrow{PC}$+$\overrightarrow{PB}$|=|$\overrightarrow{CB}$|正确.

解答 解:对于①,由$\overrightarrow{CP}•\overrightarrow{CB}=\overrightarrow{CA}•\overrightarrow{CB}$,得$\overrightarrow{CB}$•($\overrightarrow{CP}$-$\overrightarrow{CA}$)=0,
∴$\overrightarrow{CB}$•$\overrightarrow{AP}$=0,∴$\overrightarrow{CB}$⊥$\overrightarrow{AP}$,
∴点P的轨迹是CB边的高线所在的直线,①正确;
对于②,由$\overrightarrow{CP}$•$\overrightarrow{CB}$=$\overrightarrow{CA}$•$\overrightarrow{CB}$,
得|$\overrightarrow{CP}$|×|$\overrightarrow{CB}$|cos<$\overrightarrow{CP}$,$\overrightarrow{CB}$>=|$\overrightarrow{CA}$|×|$\overrightarrow{CB}$|cos<$\overrightarrow{CA}$,$\overrightarrow{CB}$>,
即|$\overrightarrow{CP}$|cos<$\overrightarrow{CP}$,$\overrightarrow{CB}$>=|$\overrightarrow{CA}$|cos<$\overrightarrow{CA}$,$\overrightarrow{CB}$>,
∴$|\overrightarrow{CP}|=|\overrightarrow{CA}|$不一定成立,②错误;
对于③,由cos<$\overrightarrow{CP}$,$\overrightarrow{CB}$>≤1,|$\overrightarrow{CP}$|cos<$\overrightarrow{CP}$,$\overrightarrow{CB}$>=|$\overrightarrow{CA}$|cos<$\overrightarrow{CA}$,$\overrightarrow{CB}$>,
得$|\overrightarrow{CP}|≥|\overrightarrow{CA}|cosC$,③正确;
对于④,当$\overrightarrow{PC}$⊥$\overrightarrow{PB}$时,以PC、PB为邻边所作的平行四边形是矩形,
因此存在点P使|$\overrightarrow{PC}$+$\overrightarrow{PB}$|=|$\overrightarrow{CB}$|,④正确.
综上,其中真命题的序号为①③④.
故选:D.

点评 本题考查了向量垂直与数量积的关系、向量的平行四边形法则、矩形的对角线的性质等基础知识与基本技能方法,考查了推理能力,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.过点P(-4,0)作函数y=$\sqrt{4-{x}^{2}}$的切线l,则切线l的方程为(  )
A.y=$\sqrt{3}$(x+4)B.y=$\frac{\sqrt{3}}{3}$(x+4)C.y=$\frac{\sqrt{2}}{2}$(x+4)D.y=$\sqrt{2}$(x+4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出程序框图如图所示,若输入n=20,则输出S=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.0D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:实数m满足m2-7am+12a2<0(a>0),命题q:实数m满足方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{6-m}$=1表示焦点在y轴上的椭圆.
(1)当a=1时,若p∧q为真,求m的取值范围;
(2)若非q是非p的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设变量x,y满足约束条件$\left\{\begin{array}{l}2x+y≤2\\ x+y≥-1\\ y≤x\end{array}\right.$,则目标函数z=2x-y的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知α,β是相交平面,直线l?平面α,则“l⊥β”是“α⊥β”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一海豚在水池中(不考虑水的深度)自由游戏,已知水池的长为30m,宽为20m,则海豚嘴尖离池边超过4m的概率为$\frac{11}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数x,y满足条件$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\\{x+y≤3}\end{array}\right.$,则z=2x+y+3的最大值是(  )
A.3B.5C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.P为椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一点,F1,F2分别是椭圆的左焦点和右焦点,过P点作PH⊥F1F2于H,若PF1⊥PF2,则|PH|=(  )
A.$\frac{25}{4}$B.$\frac{8}{3}$C.8D.$\frac{9}{4}$

查看答案和解析>>

同步练习册答案