精英家教网 > 高中数学 > 题目详情

【题目】已知实数x,y满足方程(x﹣2)2+(y﹣2)2=1.
(1)求 的取值范围;
(2)求|x+y+l|的取值范围.

【答案】
(1)解: =2+ 的几何意义为圆上动点与定点(0,1)的斜率,过(0,1)的直线与圆相切时,斜率取最值,因此 ∈[0, ],所以 ∈[2, ]
(2)解:|x+y+l|= 的几何意义为圆上动点到直线x+y+1=0的距离,圆心到直线的距离加上半径长为最大值,圆心到直线的距离减半径长为最小值, ∈[ ﹣1, +1],所以|x+y+1|∈[5﹣ ,5+ ]
【解析】(1) =2+ 的几何意义为圆上动点与定点(0,1)的斜率,过(0,1)的直线与圆相切时,斜率取最值,即可求 的取值范围;(2)|x+y+l|= 的几何意义为圆上动点到直线x+y+1=0的距离,圆心到直线的距离加上半径长为最大值,圆心到直线的距离减半径长为最小值,即可求|x+y+l|的取值范围.
【考点精析】解答此题的关键在于理解圆的一般方程的相关知识,掌握圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知不过第二象限的直线l:ax﹣y﹣4=0与圆x2+(y﹣1)2=5相切.
(1)求直线l的方程;
(2)若直线l1过点(3,﹣1)且与直线l平行,直线l2与直线l1关于直线y=1对称,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|y= },B={x|x<﹣4或x>2}
(1)若m=﹣2,求A∩(RB);
(2)若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点. (Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值为 ,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期为π.
(1)求f( )的值;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x26x+5. (Ⅰ)求 的值;
(Ⅱ)若x∈[2,6],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为6的正方体ABCD﹣A1B1C1D1中,M是BC的中点,点P是面DCC1D1内的动点,且满足∠APD=∠MPC,则三棱锥P﹣BCD的体积最大值是(
A.36
B.12
C.24
D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的正视图1是一个底边长为4、腰长为3的等腰三角形,图2、图53分别是四棱锥P﹣ABCD的侧视图和俯视图.
(1)求证:AD⊥PC;
(2)求四棱锥P﹣ABCD的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点( ,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.

查看答案和解析>>

同步练习册答案