精英家教网 > 高中数学 > 题目详情
已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-x,-3-y)

(1)若点A,B,C能构成三角形,求x,y应满足的条件;
(2)若△ABC为等腰直角三角形,且∠B为直角,求x,y的值.
分析:(1)点A,B,C能构成三角形,即三点不共线,再由向量不共线的条件得到关于x,y的不等式,即所求的x,y应满足的条件;
(2)△ABC为等腰直角三角形,且∠B为直角,可得AB⊥BC且,|AB|=|BC|,转化为坐标表示,得到方程求出x,y的值
解答:解:(1)若点A,B,C能构成三角形,则这三点不共线,
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-x,-3-y)

AB
=(3,1),
AC
=(2-x,1-y),又
AB
AC
不共线
∴3(1-y)≠2-x,
∴x,y满足的条件为3y-x≠1
(2)∵
AB
=(3,1),
BC
=(-x-1,-y),若∠B为直角,则AB⊥BC,
∴3(-x-1)-y=0,
又|AB|=|BC|,∴(x+1)2+y2=10,
再由3(-x-1)-y=0,解得
x=0
y=-3
x=-2
y=3
点评:本题考查数量积判断两个向量垂直,解题的关键是熟练掌握向量的数量积公式,向量垂直的条件与向量共线的条件,将位置关系转化为方程或不等式,本题考查了推理判断的能力及向量运算的能力,考查了方程的思想,转化的思想
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m)

(1)若A,B,C三点共线,求实数m的值;
(2)若∠ABC为锐角,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)已知向量
OA
=(3, 2)
OB
=(4, 7)
,则
1
2
AB
=
(
1
2
, 
5
2
)
(
1
2
, 
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=(3,-4)
OB
=(6,-3)
OC
=(5-m,-3-m)

(1)若A,B,C三点共线,求实数m的值;
(2)若△ABC是直角三角形,求实数m的值;
(3)若∠ABC是锐角,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)设α∈(0,π),函数f(x)的定义域为[0,1],且f(0)=0,f(1)=1,对定义域内任意的x,y,满足f(
x+y
2
)=f(x)sinα+(1-sinα)f(y).
(1)试用α表示f(
1
2
),并在f(
1
2
)时求出α的值;
(2)试用α表示f(
1
4
),并求出α的值;
(3)n∈N时,an=
1
2n
,求f(an),并猜测x∈[0,1]时,f(x)的表达式.
(文)已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m)
(1)若点A、B、C不能构成三角形,求实数m应满足的条件.
(2)若△ABC为直角三角形,求m的取值范围.

查看答案和解析>>

同步练习册答案