分析 由正弦定理,可得,a=2rsinA,b=2rsinB,c=2rsinC,再由诱导公式和两角和的正弦公式,即可证得.
解答 证明:由正弦定理,$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2r$,(r为△ABC的外接圆的半径),
则a=2rsinA,b=2rsinB,c=2rsinC,
则a=2rsinA=2rsin(B+C)=2r(sinBcosC+cosBsinC)
=2rsinBcosC+2rsinCcosB=bcosC+ccosB;
b=2rsinB=2rsin(A+C)=2r(sinAcosC+cosAsinC)
=2rsinAcosC+2rsinCcosA=acosC+ccosA;
c=2rsinC=2rsin(A+B)=2r(sinAcosB+cosAsinB)
=2rsinAcosB+2rsinBcosA=acosB+bcosA.
即有等式成立.
点评 本题考查正弦定理及运用,考查诱导公式和两角和的正弦公式的运用,考查推理能力,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$(n2+n+2)-$\frac{1}{{2}^{n}}$ | B. | $\frac{1}{2}$n(n+1)+1-$\frac{1}{{2}^{n-1}}$ | C. | $\frac{1}{2}({n}^{2}-n+2)$-$\frac{1}{{2}^{n}}$ | D. | $\frac{1}{2}$n(n+1)+2(1-$\frac{1}{{2}^{n}}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (x+8)2+(y-5)2=1 | B. | (x-7)2+(y+4)2=2 | C. | (x+3)2+(y-2)2=1 | D. | (x+4)2+(y+3)2=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com