精英家教网 > 高中数学 > 题目详情

【题目】函数图象上不同两点处切线的斜率分别是规定为线段的长度)叫做曲线在点之间的平方弯曲度,给出以下命题:

①函数图象上两点的横坐标分别为12,则

②存在这样的函数,图象上任意两点之间的平方弯曲度为常数;

③设点是抛物线上不同的两点,则

④设曲线是自然对数的底数)上不同两点,且,则的最大值为.

其中真命题的序号为__________(将所有真命题的序号都填上)

【答案】①②④

【解析】

.根据新定义利用导数求出函数弯曲度即可判断..举例判断..根据新定义利用导数求出函数弯曲度即可判断.④根据新定义利用导数求出函数弯曲度即可判断.

①由,故,又,故,∴.故①正确.

②常数函数满足图象上任意两点之间的弯曲度为常数,故②正确;

③设,又,∴,∴,取,则,故③错误.

④因为,所以,由题意可得,令,则,当且仅当,即时,取等号.故④正确.

故答案为:①②④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥SABCD中,MSB的中点,ABCDBCCD,且ABBC2CDSD1,又SD⊥面SAB

1)证明:CDSD

2)证明:CM∥面SAD

3)求四棱锥SABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某面包店随机收集了面包种类的有关数据,经分类整理得到下表:

面包类型

第一类

第二类

第三类

第四类

第五类

第六类

面包个数

90

60

30

80

100

40

好评率

0.6

0.45

0.7

0.35

0.6

0.5

好评率是指:一类面包中获得好评的个数与该类面包的个数的比值.

1)从面包店收集的面包中随机选取1个,求这个面包是获得好评的第五类面包的概率;

2)从面包店收集的面包中随机选取1个,估计这个面包没有获得好评的概率;

3)面包店为增加利润,拟改变生产策略,这将导致不同类型面包的好评率发生变化.假设表格中只有两类面包的好评率数据发生变化,那么哪类面包的好评率增加0.1,哪类面包的好评率减少0.1,使得获得好评的面包总数与样本中的面包总数的比值达到最大?(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为,且

(1)求的值;

(2)若,求的面积的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线相切于点,圆心轴上.

(1)求圆的方程;

(2)过点且不与轴重合的直线与圆相交于两点,为坐标原点,直线分别与直线相交于两点,记的面积分别是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点是 ,且椭圆经过点.

(1)求椭圆的标准方程;

(2)若过左焦点且倾斜角为45°的直线与椭圆交于两点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆a1.

)求直线y=kx+1被椭圆截得的线段长(用ak表示);

)若任意以点A0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成五组,并作出如图频率分布直方图:

(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值代表);

(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过4000元的居民中随机抽取2户进行捐款援助,设抽出损失超过8000元的居民为户,求的分布列和数学期望;

(3)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如图,根据图表格中所给数据,分别求的值,并说明是否有以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?

经济损失不超过4000元

经济损失超过4000元

合计

捐款超过500元

捐款不超过500元

合计

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:临界值表参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点到定点的距离之比它到直线的距离小1,设动点的轨迹为曲线,过点的直线交曲线两个不同的点,过点分别作曲线的切线,且二者相交于点.

(1)求曲线的方程;

(2)求证:

(3)求 的面积的最小值.

查看答案和解析>>

同步练习册答案