精英家教网 > 高中数学 > 题目详情
设函数,f(x)=x2+bx+c,g(x)=
1
|x-1
(x≠1)
1(x=1)
若关于x的方程f(g(x))=0有三个不同的实数解x1,x2,x3,则x12+x22+x32等于
 
分析:先画出g(x)的图象,观察图形可知g(x)=1有三个根,满足条件,然后图象对称性求出三个根即可.
解答:精英家教网解:先画出g(x)的图象
∵f(g(x))=0有三个不同的实数解,
∴结合图象可知g(x)=1,
∴三个不同的实数解是0,1,2
即x12+x22+x32=5,
故答案为5
点评:本题主要考查了函数与方程的综合运用,以及函数的图象与方程之间的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
(1)求证:f(0)=1且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数;
(3)设集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)与函数g(x)的图象关于x=3对称,则g(x)的表达式为(  )
A、g(x)=f(
3
2
-x)
B、g(x)=f(3-x)
C、g(x)=f(-3-x)
D、g(x)=f(6-x)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2-n)与2-n+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,若存在常数M>0,使|f(x)|≤M|x|对一切实数都成立,则称函数f(x) 为“倍约束函数”.给出下列函数,其中是“倍约束函数”的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)对于定义域分别为M,N的函数y=f(x),y=g(x),规定:
函数h(x)=
f(x)•g(x),当x∈M且x∈N
f(x),当x∈M且x∉N
g(x),当x∉M且x∈N

(1)若函数f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函数h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,设bn为曲线y=h(x)在点(an,h(an))处切线的斜率;而{an}是等差数列,公差为1(n∈N*),点P1为直线l:2x-y+2=0与x轴的交点,点Pn的坐标为(an,bn).求证:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5

(3)若g(x)=f(x+α),其中α是常数,且α∈[0,2π],请问,是否存在一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cosx,若存在请写出一个f(x)的解析式及一个α的值,若不存在请说明理由.

查看答案和解析>>

同步练习册答案