精英家教网 > 高中数学 > 题目详情
15.已知直线方程Ax+By=0,若点(1,1)到此直线的距离为$\sqrt{2}$,则A,B应满足A=B.

分析 利用点到直线的距离公式即可得出.

解答 解:∵点(1,1)到直线Ax+By=0的距离为$\sqrt{2}$,
∴$\frac{|A+B|}{\sqrt{{A}^{2}+{B}^{2}}}=\sqrt{2}$,化为2AB=A2+B2
解得A=B.
故答案为:A=B.

点评 本题考查了点到直线的距离公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图所示,在三角形ABC中,BD=2DC,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$=(  )
A.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C.$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow{b}$D.$\frac{2}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列判断错误的是(  )
A.“am2<bm2”是“a<b”的充分不必要条件
B.命题“?x∈R,x3-x2-1≤0”的否定是““?x∈R,x3-x2-1>0”
C.“若a=1,则直线x+y=0和直线x-ay=0互相垂直”的逆否命题
D.若pΛq为假命题,则p,q均为假命题
E.若p∨q为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.Sn=C1n+2C2n+3C3n+…+(n-1)Cn-1n+nCnn=n•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=$\left\{\begin{array}{l}{(2a-1)^{x}}&{(x≥0)}\\{ax+2a-3}&{(x<0)}\end{array}\right.$ 为定义域上的增函数.则实数a的取值范围1<a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,则不等式f(x+2)+f(3x-4)>0的解集为($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=ex-$\frac{1}{2}{x}^{2}$-ax,g(x)=($\frac{1}{2}$)x,存在x1∈[-1,0],对于任意x2≥$\frac{1}{2}$,使不等式g(x1)≤f(x2)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算:lg$\sqrt{\frac{3}{5}}$+$\frac{1}{2}$lg$\frac{5}{3}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=logax(a>0,a≠1),若f(x1x2…x2015)=8,则f(${x}_{1}^{2}$)+f(${x}_{2}^{2}$)+…+f(${x}_{2015}^{2}$)的值为(  )
A.4B.8C.16D.2loga8

查看答案和解析>>

同步练习册答案