精英家教网 > 高中数学 > 题目详情
已知四边形ABCD的顶点A(0,2)、B(-1,-2)、C(3,1),且
BC
=2
AD
,则顶点D的坐标为
 
分析:利用向量坐标的求法求出
BC
AD
的坐标,利用向量相等的定义:坐标分别相等列出方程求出D的坐标.
解答:解:∵A(0,2),B(-1,-2),C(3,1),
BC
=(3,1)-(-1,-2)=(4,3).
设D(x,y),∵
AD
=(x,y-2),
BC
=2
AD

∴(4,3)=(2x,2y-4).
∴x=2,y=
7
2

故答案为(2,
7
2
)
点评:本题考查向量坐标的求法:终点坐标减去始点坐标;向量相等的坐标满足的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知四边形ABCD的三个顶点A(0,2),B(-1,-2),C(3,1),且
BC
=2
AD
,则顶点D的坐标为(  )
A、(2,
7
2
)
B、(2,-
1
2
)
C、(3,2)
D、(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-2:矩阵与变换:在平面直角坐标系xOy中,已知四边形ABCD的四个顶点A(0,1),B(2,1),C(2,3),D(0,2),经矩阵M=
10
k1
表示的变换作用后,四边形ABCD变为四边 A1B1C1D1,问:四边形ABCD与四边形A1B1C1D1的面积是否相等?试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四边形ABCD的对角线互相平分且相等,PA⊥面ABCD,则下列等式中不一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)自圆O外一点P引切线与圆切于点A,M为PA中点,过M引割线交圆于B,C两点.求证:∠MCP=∠MPB.
(2)在平面直角坐标系xOy中,已知四边形ABCD的四个顶点A(0,1),B(2,1),C(2,3),D(0,2),经矩阵M=
10
k1
表示的变换作用后,四边形ABCD变为四边形A1B1C1D1,问:四边形ABCD与四边形A1B1C1D1的面积是否相等?试证明你的结论.
(3)已知A是曲线ρ=12sinθ上的动点,B是曲线ρ=12cos(θ-
π
6
)
上的动点,试求AB的最大值.
(4)设p是△ABC内的一点,x,y,z是p到三边a,b,c的距离,R是△ABC外接圆的半径,证明
x
+
y
+
z
1
2R
a2+b2+c2

查看答案和解析>>

同步练习册答案